Objective The death and dysfunction of retinal ganglion cells (RGC) is a major cause of blindness in traumatic and degenerative ocular disease. For example, 60M people are affected by glaucoma with 4.5M becoming blind in both eyes, whilst optic neuritis affects 5/100,000 people and represents a significant problem for sufferers. RGC are the sole projection neurons and their axons make up the optic nerve, making them exquisitely sensitive to injury. As CNS neurons are irreplaceable, neuroprotective strategies are paramount to therapies aimed at preserving vision but as of yet, no such therapy exists. Current research has demonstrated significant neuroprotection by mesenchymal stem cells (MSC) including those from the bone marrow (BMSC), acting not as replacements for RGC but rather, as paracrine-mediated support cells. Clinical trials are already ongoing to test their efficacy in patients. Despite this, the exact mechanism behind their neuroprotective potential is not well understood. Recent studies have shown that exosomes, extracellular vesicles containing proteins, mRNA and miRNA may mediate much of the paracrine support offered by MSC and thus act as an easily purifiable cell-free alternative therapy for RGC neuroprotection. This proposal aims to assess the therapeutic efficacy of BMSC-derived exosomes, their characterisation and that of their RNA cargo. We will test these exosomes in animal models of traumatic (optic nerve crush) and degenerative (glaucoma) eye disease. Specifically, this proposal employs a novel strategy to promote RGC survival (relevant to ONC and glaucoma) and axon regeneration (relevant to optic nerve crush) through the use of exosomal delivery of mRNA/miRNA into injured RGC utilizing in vitro and in vivo injury models, RNAseq and CRISPR technology. Fields of science natural sciencesbiological sciencesneurobiologymedical and health sciencesclinical medicineophthalmologyglaucomanatural sciencesbiological sciencescell biologymedical and health sciencesmedical biotechnologycells technologiesstem cellsnatural sciencesbiological sciencesgeneticsRNA Keywords Neuroprotection retinal neurons optic nerve regeneration glaucoma mesenchymal stem cells Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator THE UNIVERSITY OF BIRMINGHAM Net EU contribution € 269 857,80 Address Edgbaston B15 2TT Birmingham United Kingdom See on map Region West Midlands (England) West Midlands Birmingham Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Partners (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all Partner Partner organisations contribute to the implementation of the action, but do not sign the Grant Agreement. United States Department of Health and Human Services United States Net EU contribution € 0,00 Address Independence avenue s. w. 200 20201 Washington d.c. See on map Activity type Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments) Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 172 130,40