Objective
The end of scaling according to Moore’s law will reinforce the need to look for energy efficient and faster devices based on alternative materials and concepts that are however compatible with Complementary metal-oxide-semiconductor (CMOS). A new generation of logic and storage devices might arise from promising antiferromagnetic materials because of the absence of a net magnetic moment and of the characteristic frequencies of THz-order. In an antiferromagnet, the electron spins on adjacent atoms cancel each other out. An antiferromagnet has thus no associated magnetic field meaning that individual devices can encode information and be packed ultimately densely without interacting with one another. Simultaneously, the origin of this stability makes the antiferromagnet state difficult to read and control. The recent combination of antiferromagnets and spintronics has however opened the road towards the electrical control of their magnetic order.
The aim of the project is first to establish a “gold standard” to electrically control the dynamics of antiferromagnetic thin films. In ferromagnets, electrical switching via the spin transfer torque is presently the most promising path to low power random access memories. Similar considerations are expected to apply here based on non-staggered and staggered spin-orbit torques in innovative multilayer systems consisting only of a bulk low damping antiferromagnetic insulator and a heavy metal, and layers of the promising metallic antiferromagnets with bulk broken inversion symmetry. Identifying the systems in which spin-orbit torques can effectively compensate the magnetic damping will permit to achieve an ultra-fast domain wall motion induced by short pulses, and contribute towards antiferromagnetic based devices such as memristors or nano-oscillators for real technological applications. FAST will thus pave the way to establish the use of spin-orbit torques in antiferromagnets as a new paradigm for magnetic device concepts.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- engineering and technology materials engineering coating and films
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2016
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
55122 MAINZ
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.