Objective Heart failure (HF) is a progressing disease currently affecting 2% of the population in the developed world with a mortality rate of 50% within the first five years. While HF with reduced ejection fraction, primarily associated with myocardial infarction, can be detected with sufficient accuracy, HF with preserved ejection fraction is far more difficult to diagnose. Accordingly, there is an urgent need to better diagnose these patients to ultimately guide and improve treatment. Among the clinical imaging modalities, Cardiovascular Magnetic Resonance (CMR) is the gold standard for assessing cardiac mass and ejection fraction, and is capable to assess local cardiac mechanics and tissue properties. Beyond these established methods, cardiac diffusion tensor imaging has emerged as a new tool to enable insights into the microscopic morphology of the beating heart. Unfortunately, due to scan time limitations during clinical routine, compromises in spatial resolution and coverage have to be made. To overcome practical limitations of clinical in vivo CMR imaging and to enable prediction of disease progression for individual patients, additional tools are required. To this end, biomechanical models have attracted considerable attention. Once adapted sufficiently to in-vivo imaging, these models promise patient-specific insights into causes and progression of disease and, help guiding treatment. It is the objective of the present fellowship proposal to significantly advance patient-specific, image-guided modelling of HF by incorporating the most recent developments in both CMR imaging and biophysical modelling. The proposed framework will address limitations of current approaches, which impose generic assumptions about cardiac tissue properties and structure. With recent innovations in CMR imaging, as developed by the applicant, data on local changes of myocardial microstructure will be obtained to achieve the next level of diagnostic and predictive cardiac modelling of HF. Fields of science social sciencessociologydemographymortalitymedical and health sciencesclinical medicinecardiology Keywords Heart failure with preserved ejection fraction Patient specific biomechanical models Model based heart failure prediction Advanced cardiovascular magnetic resonance Personalized treatment planning Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2016 - Individual Fellowships Call for proposal H2020-MSCA-IF-2016 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH Net EU contribution € 247 840,20 Address Raemistrasse 101 8092 Zuerich Switzerland See on map Region Schweiz/Suisse/Svizzera Zürich Zürich Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Partners (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all Partner Partner organisations contribute to the implementation of the action, but do not sign the Grant Agreement. THE REGENTS OF THE UNIVERSITY OF CALIFORNIA United States Net EU contribution € 0,00 Address Franklin street 1111 12 floor 94607 Oakland ca See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 160 130,40