Skip to main content

Patient specific magnetic resonance image guided biomechanical modelling of the heart – A novel tool towards personalized medicine in heart failure

Objective

Heart failure (HF) is a progressing disease currently affecting 2% of the population in the developed world with a mortality rate of 50% within the first five years. While HF with reduced ejection fraction, primarily associated with myocardial infarction, can be detected with sufficient accuracy, HF with preserved ejection fraction is far more difficult to diagnose. Accordingly, there is an urgent need to better diagnose these patients to ultimately guide and improve treatment. Among the clinical imaging modalities, Cardiovascular Magnetic Resonance (CMR) is the gold standard for assessing cardiac mass and ejection fraction, and is capable to assess local cardiac mechanics and tissue properties. Beyond these established methods, cardiac diffusion tensor imaging has emerged as a new tool to enable insights into the microscopic morphology of the beating heart. Unfortunately, due to scan time limitations during clinical routine, compromises in spatial resolution and coverage have to be made. To overcome practical limitations of clinical in vivo CMR imaging and to enable prediction of disease progression for individual patients, additional tools are required. To this end, biomechanical models have attracted considerable attention. Once adapted sufficiently to in-vivo imaging, these models promise patient-specific insights into causes and progression of disease and, help guiding treatment. It is the objective of the present fellowship proposal to significantly advance patient-specific, image-guided modelling of HF by incorporating the most recent developments in both CMR imaging and biophysical modelling. The proposed framework will address limitations of current approaches, which impose generic assumptions about cardiac tissue properties and structure. With recent innovations in CMR imaging, as developed by the applicant, data on local changes of myocardial microstructure will be obtained to achieve the next level of diagnostic and predictive cardiac modelling of HF.

Call for proposal

H2020-MSCA-IF-2016
See other projects for this call

Coordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Address
Raemistrasse 101
8092 Zuerich
Switzerland
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 247 840,20

Partners (1)

The Regents of the University of California San Francisco
United States
Address
Parnassus Avenue 521
94143-0410 San Francisco
Activity type
Higher or Secondary Education Establishments