Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Decomposing Heterogeneity in Autism Spectrum Disorders

Periodic Reporting for period 4 - AUTISMS (Decomposing Heterogeneity in Autism Spectrum Disorders)

Período documentado: 2022-06-01 hasta 2023-12-31

Autism spectrum disorders (ASD) affect 1-2% of the population and are a major public health issue. Heterogeneity between affected ASD individuals is substantial both at clinical and etiological levels, thus warranting the idea that we should begin characterizing the ASD population as multiple kinds of ‘autisms’. Without an advanced understanding of how heterogeneity manifests in ASD, it is likely that we will not make pronounced progress towards translational research goals that can have real impact on patient’s lives. This research program is focused on decomposing heterogeneity in ASD at multiple levels of analysis. The overall objectives are to understand how specific types of stratifiers could be meaningful in pointing to differential clinical outcomes and underlying biology. By enhancing the precision of our understanding about multiple subtypes of ASD this work will help accelerate progress towards the ideals of personalized medicine and help to reduce the burden of ASD on individuals, families, and society.
In this project we examined a variety of different types of stratifiers and other continuous models of heterogeneity in autism. Stratifiers included variables such as biological sex, early language outcomes, social visual engagement, and a number of unsupervised data-driven distinctions that can be made with machine learning algorithms applied to phenotypic behavioral data and neuroimaging biomarkers. We also examined continuous models of heterogeneity such as continuous variation in how individuals developed and responded to early intervention. We uncovered several important findings from this work. First, biological sex is a meaningful stratifier that helps disentangle heterogeneity in functional and structural neuroimaging biomarkers (e.g. neural self-representation response, excitation-inhibition imbalance, cortical thickness). Second, early language outcomes are an early developmental distinction that allows for splitting autism into outcome-relevant subtypes, but also subtypes with different developmental and neurobiological mechanisms underpinning them both at the macro-scale level measured by neuroimaging data, but also by biological mechanisms measured in gene expression. Third, we identified that continuous variation in how fast an individual responds to an early behavioral intervention can be predicted from baseline phenotypic and gene expression features measured before the individuals starts the intervention. Fourth, we discovered that subtypes defined by how an individual visually engages with the social world around them is a meaningful distinction that helps parse apart different ways in which neural circuits for social and visual processing are connected. Fifth, we utilized data-driven models of phenotypic and neuroimaging features to define subtypes, and then showcased how subtyping based on data-driven models can help unpack heterogeneity in autism.
The insights from the project help push further our knowledge of how heterogeneity manifests in autism, and points to particular ways in which such heterogeneity can be both clinically, but also mechanistically relevant.
AUTISMS