Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Flame nanoengineering for antibacterial medical devices

Objective

Engineers in nanotechnology research labs have been quite innovative the last decade in designing nanoscale materials for medicine. However, very few of these exciting discoveries are translated to commercial medical products today. The main reasons for this are two inherent limitations of most nanomanufacture processes: scalability and reproducibility. There is too little knowledge on how well the unique properties associated with nanoparticles are maintained during their large-scale production while often poor reproducibility hinders their successful use. A key goal here is to utilize a nanomanufacture process famous for its scalability and reproducibility, flame aerosol reactors that produce at tons/hr commodity powders, and advance the knowledge for synthesis of complex nanoparticles and their direct integration in medical devices. Our aim is to develop the next generation of antibacterial medical devices to fight antimicrobial resistance, a highly understudied field. Antimicrobial resistance constitutes the most serious public health threat today with estimations to become the leading cause of human deaths in 30 years.
We focus on flame direct nanoparticle deposition on substrates combining nanoparticle production and functional layer deposition in a single-step with close attention to product nanoparticle properties and device assembly, extending beyond the simple commodity powders of the past. Specific targets here are two devices; a) hybrid drug microneedle patch with photothermal nanoparticles to fight life-threatening skin infections from drug-resistant bacteria and b) smart nanocoatings on implants providing both osteogenic and self-triggered antibacterial properties. The engineering approach for the development of antibacterial devices will provide insight into the basic physicochemical principles to assist in commercialization while the outcome of this research will help the fight against antibiotic resistance improving the public health worldwide.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-STG

See all projects funded under this call

Host institution

KAROLINSKA INSTITUTET
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 812 500,00
Address
NOBELS VAG 5
171 77 STOCKHOLM
Sweden

See on map

Region
Östra Sverige Stockholm Stockholms län
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 812 500,00

Beneficiaries (1)

My booklet 0 0