Skip to main content

REsponsive theranostic nanosystems for Advanced Cancer Treatment

Objective

REACT aims to dramatically impact the targeted release of diagnostic agents and drugs with nanomedicines that respond to biological cues or changing pathophysiological conditions, thus enabling ultrasensitive diagnosis and exquisite therapy selectivity. Nanomedicine research against cancer focuses on the local targeted delivery of chemotherapeutics to enhance drug efficacy and reduce side effects. Despite all the efforts in the design of chemotherapeutic agents as nanomedicines, hardly any improvement has been translated into benefits for patients’ survival. There is an urgent need for improved carrier systems able to deliver high doses of diagnostic agents and anti-cancer drugs to the tumor. Stimuli responsive carriers are promising candidates since the release of the cargo can be triggered locally in the tumor environment. Currently, there exists an unparalleled effort to identify genes, proteins and metabolites implicated in human disease and utilize systems biology and mathematical approaches in order to develop new prognostic tools for the treatment of cancer and develop more targeted therapies for patients. As an expert in drug delivery systems, the PI intends to bring all these efforts and advances into the design of stimuli responsive organic-inorganic hybrid nanoparticles that can adapt their response to the biological milieu. The novel engineered delivery systems will consist of an inorganic porous matrix surface-modified with tumor-specific molecules with the ability to sense changes in the environmental conditions and react by providing a proportional release. These nanosystems can potentially be employed for early in vitro diagnosis through effective screening of deadly tumors, such as neuroblastoma and glioblastoma. Moreover, through the sustained delivery of the nanosystems from injectable gels that can be locally implanted in patients at risk of developing a tumor, a clinically relevant tool for in vivo diagnosis and targeted therapy can be achieved.

Field of science

  • /medical and health sciences/medical biotechnology/nanomedicine
  • /natural sciences/biological sciences/biochemistry/biomolecules/proteins
  • /medical and health sciences/clinical medicine/oncology/cancer

Call for proposal

ERC-2017-STG
See other projects for this call

Funding Scheme

ERC-STG - Starting Grant

Host institution

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Address
College Green
2 Dublin
Ireland
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 498 345,77

Beneficiaries (1)

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Ireland
EU contribution
€ 1 498 345,77
Address
College Green
2 Dublin
Activity type
Higher or Secondary Education Establishments