Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Categorified Donaldson-Thomas Theory

Objective

According to string theory, coherent sheaves on three-dimensional Calabi-Yau spaces encode fundamental properties of the universe. On the other hand, they have a purely mathematical definition. We will develop and use the new field of categorified Donaldson-Thomas (DT) theory, which counts these objects. Via the powerful perspective of noncommutative algebraic geometry, this theory has found application in recent years in a wide variety of contexts, far from classical algebraic geometry.

Categorification has proved tremendously powerful across mathematics, for example the entire subject of algebraic topology was started by the categorification of Betti numbers. The categorification of DT theory leads to the replacement of the numbers of DT theory by vector spaces, of which these numbers are the dimensions. In the area of categorified DT theory we have been able to prove fundamental conjectures upgrading the famous wall crossing formula and integrality conjecture in noncommutative algebraic geometry. The first three projects involve applications of the resulting new subject:

1. Complete the categorification of quantum cluster algebras, proving the strong positivity conjecture.

2. Use cohomological DT theory to prove the outstanding conjectures in the nonabelian Hodge theory of Riemann surfaces, and the subject of Higgs bundles.

3. Prove the comparison conjecture, realising the study of Yangian quantum groups and the geometric representation theory around them as a special case of DT theory.

The final objective involves coming full circle, and applying our recent advances in noncommutative DT theory to the original theory that united string theory with algebraic geometry:

4. Develop a generalised theory of categorified DT theory extending our results in noncommutative DT theory, proving the integrality conjecture for categories of coherent sheaves on Calabi-Yau 3-folds.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-STG

See all projects funded under this call

Host institution

THE UNIVERSITY OF EDINBURGH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 221 771,54
Address
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
United Kingdom

See on map

Region
Scotland Eastern Scotland Edinburgh
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 221 771,54

Beneficiaries (2)

My booklet 0 0