CORDIS provides links to public deliverables and publications of HORIZON projects.
Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .
Deliverables
D6.1, D6.2, D6.3, D6.4 D6.5 Project website, Dissemination & outreach plan, Summer schools and Career events
Dissemination and outreach plan (opens in new window)D6.1, D6.2, D6.3, D6.4 D6.5 Project website, Dissemination & outreach plan, Summer schools and Career events
D1.1, D1.2, D1.3 software tools, benchmark test suite of automotive multi-disciplinary/domain real-world scenario
Experience-based high dimensional & big data assisted optimisation (opens in new window)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Multi-domain optimisation software package based on online experience exploitation in dynamic environments (opens in new window)D11 D12 D13 software tools benchmark test suite of automotive multidisciplinarydomain realworld scenario
Constrained & Multicriteria optimisation (opens in new window)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Robustness & Uncertainty Modelling in experience-based optimisation (opens in new window)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Research and personal skill report, Final (opens in new window)D41 D42 D43 ECOLE training programme Research and personal skill reports Career development reports
Deep structured learning and model space learning for engineering and ICT data (opens in new window)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Dissemination and outreach final report (opens in new window)D61 D62 D63 D64 D65 Project website Dissemination outreach plan Summer schools and Career events
Dissemination and outreach mid-term plan & report (opens in new window)D6.1, D6.2, D6.3, D6.4 D6.5 Project website, Dissemination & outreach plan, Summer schools and Career events
Text mining models for product feature optimisation (opens in new window)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Multi-criteria optimisation software environment based on learning for adaptive feature selection and constraint prediction (opens in new window)D11 D12 D13 software tools benchmark test suite of automotive multidisciplinarydomain realworld scenario
Semi-supervised learning for class imbalance problems (opens in new window)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Integrated software environment (‘Self-Tuning optimisation) and manual (opens in new window)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Integrated software environment and manual (opens in new window)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Research and personal skill report, mid-term (opens in new window)D4.1, D4.2, D4.3 ECOLE training programme, Research and personal skill reports, Career development reports
Online learning for proactive dynamic and robust optimization (opens in new window)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Career development report, yearly (opens in new window)Career development report yearly
ECOLE-training programme (opens in new window)
D4.1, D4.2, D4.3 ECOLE training programme, Research and personal skill reports, Career development reports
Publications
Author(s):
Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck
Published in:
2021 Genetic and Evolutionary Computation Conference, GECCO 2021, 2021, ISBN 9781450383516
Publisher:
Association for Computing Machinery
DOI:
10.1145/3449726.3463206
Author(s):
Thiago Rios, Bas Van Stein, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel
Published in:
2021 International Conference on 3D Vision (3DV), 2021, ISBN 978-1-6654-2689-3
Publisher:
IEEE
DOI:
10.1109/3dv53792.2021.00110
Author(s):
Sibghat Ullah, Zhao Xu, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Back
Published in:
2020 International Joint Conference on Neural Networks (IJCNN), 2020, Page(s) 1-9, ISBN 978-1-7281-6926-2
Publisher:
IEEE
DOI:
10.1109/ijcnn48605.2020.9207254
Author(s):
Stephen Friess, Peter Tiňo; Zhao Xu; Stefan Menzel; Bernhard Sendhoff; Xin Yao
Published in:
2021 International Joint Conference on Neural Networks (IJCNN), 2021, ISBN 978-1-6654-4597-9
Publisher:
IEEE
DOI:
10.1109/ijcnn52387.2021.9533915
Author(s):
Sibghat Ullah, Duc Anh Nguyen, Hao Wang, Stefan Menzel, Bernhard Sendhoff and Thomas Bäck
Published in:
IEEE Symposium Series on Computational Intelligence (SSCI), 2020
Publisher:
IEEE
Author(s):
Sneha Saha, Stefan Menzel, Leandro Minku, Xin Yao, Bernhard Sendhoff and Patricia Wollstadt
Published in:
2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020
Publisher:
IEEE
Author(s):
Sneha Saha, Thiago Rios, Leandro Minku, Bas Vas Stein, Patricia Wollstadt, Xin Yao, Thomas Back, Bernhard Sendhoff, Stefan Menzel
Published in:
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2022, ISBN 978-1-7281-9049-5
Publisher:
IEEE
DOI:
10.1109/ssci50451.2021.9660034
Author(s):
S. Friess, P. Tiňo, S. Menzel, Z. Xu, B. Sendhoff and X. Yao
Published in:
2022 International Joint Conference on Neural Networks (IJCNN), 2022
Publisher:
IEEE
Author(s):
S. Saha, L. L. Minku, X. Yao, B. Sendhoff , and S. Menzel
Published in:
2022 International Design Conference, 2022
Publisher:
Cambridge Press
DOI:
10.1017/pds.2022.177
Author(s):
Thiago Rios, Bas van Stein, Stefan Menzel, Thomas Back, Bernhard Sendhoff, Patricia Wollstadt
Published in:
2020 International Joint Conference on Neural Networks (IJCNN), 2020, Page(s) 1-9, ISBN 978-1-7281-6926-2
Publisher:
IEEE
DOI:
10.1109/ijcnn48605.2020.9207326
Author(s):
Zhao Xu, Daniel Onoro Rubio, Giuseppe Serra, Mathias Niepert
Published in:
2021 International Joint Conference on Neural Networks (IJCNN), 2021, ISBN 978-1-6654-4597-9
Publisher:
IEEE
DOI:
10.1109/ijcnn52387.2021.9533762
Author(s):
Giuseppe Serra, Zhao Xu, Mathias Niepert, Carolin Lawrence, Peter Tiňo, Xin Yao
Published in:
2021 International Joint Conference on Neural Networks (IJCNN), 2021, ISBN 978-1-6654-4597-9
Publisher:
IEEE
DOI:
10.1109/ijcnn52387.2021.9533692
Author(s):
Sneha Saha, Thiago Rios, Stefan Menzel, Bernhard Sendhoff, Thomas Back, Xin Yao, Zhao Xu, Patricia Wollstadt
Published in:
2019 International Conference on Data Mining Workshops (ICDMW), 2019, Page(s) 785-792, ISBN 978-1-7281-4896-0
Publisher:
IEEE
DOI:
10.1109/icdmw.2019.00116
Author(s):
Sneha Saha, Thiago Rios, Leandro L. Minku, Xin Yao, Zhao Xu, Bernhard Sendhoff, Stefan Menzel
Published in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Page(s) 858-866, ISBN 978-1-7281-2485-8
Publisher:
IEEE
DOI:
10.1109/ssci44817.2019.9002958
Author(s):
Stephen Friess, Peter Tino, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Published in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Page(s) 2027-2033, ISBN 978-1-7281-2485-8
Publisher:
IEEE
DOI:
10.1109/ssci44817.2019.9002976
Author(s):
Gan Ruan, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Published in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Page(s) 2034-2041, ISBN 978-1-7281-2485-8
Publisher:
IEEE
DOI:
10.1109/ssci44817.2019.9002815
Author(s):
Thiago Rios, Bernhard Sendhoff, Stefan Menzel, Thomas Back, Bas van Stein
Published in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Page(s) 791-798, ISBN 978-1-7281-2485-8
Publisher:
IEEE
DOI:
10.1109/ssci44817.2019.9003161
Author(s):
Jiawen Kong, Wojtek Kowalczyk, Duc Anh Nguyen, Thomas Back, Stefan Menzel
Published in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Page(s) 3072-3078, ISBN 978-1-7281-2485-8
Publisher:
IEEE
DOI:
10.1109/ssci44817.2019.9002679
Author(s):
Thiago Rios, Patricia Wollstadt, Bas van Stein, Thomas Back, Zhao Xu, Bernhard Sendhoff, Stefan Menzel
Published in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Page(s) 1367-1374, ISBN 978-1-7281-2485-8
Publisher:
IEEE
DOI:
10.1109/ssci44817.2019.9002982
Author(s):
Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Back
Published in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Page(s) 819-828, ISBN 978-1-7281-2485-8
Publisher:
IEEE
DOI:
10.1109/ssci44817.2019.9002805
Author(s):
Stephen Friess, Peter Tiňo, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Published in:
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021, ISBN 978-1-7281-9049-5
Publisher:
IEEE
DOI:
10.1109/ssci50451.2021.9660001
Author(s):
Sneha Saha; Leandro L. Minku; Xin Yao; Bernhard Senhoff; Stefan Menzel
Published in:
2021 IEEE Congress on Evolutionary Computation (CEC), 2021, ISBN 978-1-7281-8394-7
Publisher:
IEEE
DOI:
10.1109/cec45853.2021.9504772
Author(s):
Stephen Friess, Peter Tino, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Published in:
2020 IEEE Congress on Evolutionary Computation (CEC), 2020, Page(s) 1-7, ISBN 978-1-7281-6929-3
Publisher:
IEEE
DOI:
10.1109/cec48606.2020.9185687
Author(s):
Duc Anh Nguyen, Anna V. Kononova, Stefan Menzel, Bernhard Sendhoff, Thomas Back
Published in:
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021, ISBN 978-1-7281-9049-5
Publisher:
IEEE
DOI:
10.1109/ssci50451.2021.9660073
Author(s):
Sneha Saha, Leandro Minku, Xin Yao, Bernard Sendhoff, Stefan Menzel
Published in:
2022 International Joint Conference on Neural Networks (IJCNN), 2022
Publisher:
IEEE
Author(s):
Thiago Rios, Jiawen Kong, Bas van Stein, Thomas Bäck, Patricia Wollstadt, Bernhard Sendhoff and Stefan Menzel
Published in:
2020 IEEE Symposium Series on Computational Intelligence SSCI, 2020
Publisher:
IEEE
Author(s):
J. Kong, W. Kowalczyk, K. Jonker, S. Menzel and T. Bäck
Published in:
the 18th Int. Conference on Data Science (ICDATA’22), 2022
Publisher:
Springer
Author(s):
S. Ullah, H. Wang, S. Menzel, B. Sendhoff and T. Bäck
Published in:
2022 International Conference on Parallel Problem Solving from Nature, 2022
Publisher:
Springer
Author(s):
Duc Anh Nguyen, Jiawen Kong, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Anna V. Kononova, Thomas Bäck
Published in:
2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), 2021, ISBN 978-1-6654-2100-3
Publisher:
IEEE
DOI:
10.1109/dsaa53316.2021.9564147
Author(s):
Gan Ruan, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Published in:
2020 IEEE Congress on Evolutionary Computation (CEC), 2020, Page(s) 1-8, ISBN 978-1-7281-6929-3
Publisher:
IEEE
DOI:
10.1109/cec48606.2020.9185907
Author(s):
Stephen Friess, Peter Tiňo, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Published in:
Parallel Problem Solving from Nature – PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I, Issue 12269, 2020, Page(s) 583-596, ISBN 978-3-030-58111-4
Publisher:
Springer International Publishing
DOI:
10.1007/978-3-030-58112-1_40
Author(s):
Jiawen Kong, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck
Published in:
Parallel Problem Solving from Nature – PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I, Issue 12269, 2020, Page(s) 512-523, ISBN 978-3-030-58111-4
Publisher:
Springer International Publishing
DOI:
10.1007/978-3-030-58112-1_35
Author(s):
Jiawen Kong, Thiago Rios, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck
Published in:
Advances in Knowledge Discovery and Data Mining - 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part II, Issue 12085, 2020, Page(s) 84-96, ISBN 978-3-030-47435-5
Publisher:
Springer International Publishing
DOI:
10.1007/978-3-030-47436-2_7
Author(s):
Thiago Rios, Bas van Stein, Patricia Wollstadt, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel
Published in:
2021 IEEE Congress on Evolutionary Computation (CEC), 2021
Publisher:
IEEE
DOI:
10.1109/cec45853.2021.9504746
Author(s):
Thiago Rios, Bas van Stein, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel
Published in:
IEEE Transactions on Evolutionary Computation , 2021, ISSN 1089-778X
Publisher:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tevc.2021.3086308
Author(s):
D.A. Nguyen, A.V. Kononova, S. Menzel, B. Sendhoff and T. Bäck
Published in:
IEEE Access, 2022, ISSN 2169-3536
Publisher:
Institute of Electrical and Electronics Engineers Inc.
DOI:
10.1109/access.2022.3192036
Searching for OpenAIRE data...
There was an error trying to search data from OpenAIRE
No results available