CORDIS fornisce collegamenti ai risultati finali pubblici e alle pubblicazioni dei progetti ORIZZONTE.
I link ai risultati e alle pubblicazioni dei progetti del 7° PQ, così come i link ad alcuni tipi di risultati specifici come dataset e software, sono recuperati dinamicamente da .OpenAIRE .
Risultati finali
D6.1, D6.2, D6.3, D6.4 D6.5 Project website, Dissemination & outreach plan, Summer schools and Career events
Dissemination and outreach plan (si apre in una nuova finestra)D6.1, D6.2, D6.3, D6.4 D6.5 Project website, Dissemination & outreach plan, Summer schools and Career events
D1.1, D1.2, D1.3 software tools, benchmark test suite of automotive multi-disciplinary/domain real-world scenario
Experience-based high dimensional & big data assisted optimisation (si apre in una nuova finestra)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Multi-domain optimisation software package based on online experience exploitation in dynamic environments (si apre in una nuova finestra)D11 D12 D13 software tools benchmark test suite of automotive multidisciplinarydomain realworld scenario
Constrained & Multicriteria optimisation (si apre in una nuova finestra)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Robustness & Uncertainty Modelling in experience-based optimisation (si apre in una nuova finestra)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Research and personal skill report, Final (si apre in una nuova finestra)D41 D42 D43 ECOLE training programme Research and personal skill reports Career development reports
Deep structured learning and model space learning for engineering and ICT data (si apre in una nuova finestra)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Dissemination and outreach final report (si apre in una nuova finestra)D61 D62 D63 D64 D65 Project website Dissemination outreach plan Summer schools and Career events
Dissemination and outreach mid-term plan & report (si apre in una nuova finestra)D6.1, D6.2, D6.3, D6.4 D6.5 Project website, Dissemination & outreach plan, Summer schools and Career events
Text mining models for product feature optimisation (si apre in una nuova finestra)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Multi-criteria optimisation software environment based on learning for adaptive feature selection and constraint prediction (si apre in una nuova finestra)D11 D12 D13 software tools benchmark test suite of automotive multidisciplinarydomain realworld scenario
Semi-supervised learning for class imbalance problems (si apre in una nuova finestra)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Integrated software environment (‘Self-Tuning optimisation) and manual (si apre in una nuova finestra)D21 D21 D23 D24 software tools for high dimensional big data assisted optimisation Constrained Multicriteria optimisation Robustness Uncertainty Modelling in optimisation
Integrated software environment and manual (si apre in una nuova finestra)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Research and personal skill report, mid-term (si apre in una nuova finestra)D4.1, D4.2, D4.3 ECOLE training programme, Research and personal skill reports, Career development reports
Online learning for proactive dynamic and robust optimization (si apre in una nuova finestra)D31 D32 D33 D34 D35 software tools on semisupervised learning for class imbalance problems model space learning and representation learning text mining with deep probabilistic models learning for proactive dynamic and robust optimisation with online feature selection
Career development report, yearly (si apre in una nuova finestra)Career development report yearly
ECOLE-training programme (si apre in una nuova finestra)
D4.1, D4.2, D4.3 ECOLE training programme, Research and personal skill reports, Career development reports
Pubblicazioni
Autori:
Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Bäck
Pubblicato in:
2021 Genetic and Evolutionary Computation Conference, GECCO 2021, 2021, ISBN 9781450383516
Editore:
Association for Computing Machinery
DOI:
10.1145/3449726.3463206
Autori:
Thiago Rios, Bas Van Stein, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel
Pubblicato in:
2021 International Conference on 3D Vision (3DV), 2021, ISBN 978-1-6654-2689-3
Editore:
IEEE
DOI:
10.1109/3dv53792.2021.00110
Autori:
Sibghat Ullah, Zhao Xu, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Back
Pubblicato in:
2020 International Joint Conference on Neural Networks (IJCNN), 2020, Pagina/e 1-9, ISBN 978-1-7281-6926-2
Editore:
IEEE
DOI:
10.1109/ijcnn48605.2020.9207254
Autori:
Stephen Friess, Peter Tiňo; Zhao Xu; Stefan Menzel; Bernhard Sendhoff; Xin Yao
Pubblicato in:
2021 International Joint Conference on Neural Networks (IJCNN), 2021, ISBN 978-1-6654-4597-9
Editore:
IEEE
DOI:
10.1109/ijcnn52387.2021.9533915
Autori:
Sibghat Ullah, Duc Anh Nguyen, Hao Wang, Stefan Menzel, Bernhard Sendhoff and Thomas Bäck
Pubblicato in:
IEEE Symposium Series on Computational Intelligence (SSCI), 2020
Editore:
IEEE
Autori:
Sneha Saha, Stefan Menzel, Leandro Minku, Xin Yao, Bernhard Sendhoff and Patricia Wollstadt
Pubblicato in:
2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020
Editore:
IEEE
Autori:
Sneha Saha, Thiago Rios, Leandro Minku, Bas Vas Stein, Patricia Wollstadt, Xin Yao, Thomas Back, Bernhard Sendhoff, Stefan Menzel
Pubblicato in:
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2022, ISBN 978-1-7281-9049-5
Editore:
IEEE
DOI:
10.1109/ssci50451.2021.9660034
Autori:
S. Friess, P. Tiňo, S. Menzel, Z. Xu, B. Sendhoff and X. Yao
Pubblicato in:
2022 International Joint Conference on Neural Networks (IJCNN), 2022
Editore:
IEEE
Autori:
S. Saha, L. L. Minku, X. Yao, B. Sendhoff , and S. Menzel
Pubblicato in:
2022 International Design Conference, 2022
Editore:
Cambridge Press
DOI:
10.1017/pds.2022.177
Autori:
Thiago Rios, Bas van Stein, Stefan Menzel, Thomas Back, Bernhard Sendhoff, Patricia Wollstadt
Pubblicato in:
2020 International Joint Conference on Neural Networks (IJCNN), 2020, Pagina/e 1-9, ISBN 978-1-7281-6926-2
Editore:
IEEE
DOI:
10.1109/ijcnn48605.2020.9207326
Autori:
Zhao Xu, Daniel Onoro Rubio, Giuseppe Serra, Mathias Niepert
Pubblicato in:
2021 International Joint Conference on Neural Networks (IJCNN), 2021, ISBN 978-1-6654-4597-9
Editore:
IEEE
DOI:
10.1109/ijcnn52387.2021.9533762
Autori:
Giuseppe Serra, Zhao Xu, Mathias Niepert, Carolin Lawrence, Peter Tiňo, Xin Yao
Pubblicato in:
2021 International Joint Conference on Neural Networks (IJCNN), 2021, ISBN 978-1-6654-4597-9
Editore:
IEEE
DOI:
10.1109/ijcnn52387.2021.9533692
Autori:
Sneha Saha, Thiago Rios, Stefan Menzel, Bernhard Sendhoff, Thomas Back, Xin Yao, Zhao Xu, Patricia Wollstadt
Pubblicato in:
2019 International Conference on Data Mining Workshops (ICDMW), 2019, Pagina/e 785-792, ISBN 978-1-7281-4896-0
Editore:
IEEE
DOI:
10.1109/icdmw.2019.00116
Autori:
Sneha Saha, Thiago Rios, Leandro L. Minku, Xin Yao, Zhao Xu, Bernhard Sendhoff, Stefan Menzel
Pubblicato in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Pagina/e 858-866, ISBN 978-1-7281-2485-8
Editore:
IEEE
DOI:
10.1109/ssci44817.2019.9002958
Autori:
Stephen Friess, Peter Tino, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Pubblicato in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Pagina/e 2027-2033, ISBN 978-1-7281-2485-8
Editore:
IEEE
DOI:
10.1109/ssci44817.2019.9002976
Autori:
Gan Ruan, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Pubblicato in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Pagina/e 2034-2041, ISBN 978-1-7281-2485-8
Editore:
IEEE
DOI:
10.1109/ssci44817.2019.9002815
Autori:
Thiago Rios, Bernhard Sendhoff, Stefan Menzel, Thomas Back, Bas van Stein
Pubblicato in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Pagina/e 791-798, ISBN 978-1-7281-2485-8
Editore:
IEEE
DOI:
10.1109/ssci44817.2019.9003161
Autori:
Jiawen Kong, Wojtek Kowalczyk, Duc Anh Nguyen, Thomas Back, Stefan Menzel
Pubblicato in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Pagina/e 3072-3078, ISBN 978-1-7281-2485-8
Editore:
IEEE
DOI:
10.1109/ssci44817.2019.9002679
Autori:
Thiago Rios, Patricia Wollstadt, Bas van Stein, Thomas Back, Zhao Xu, Bernhard Sendhoff, Stefan Menzel
Pubblicato in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Pagina/e 1367-1374, ISBN 978-1-7281-2485-8
Editore:
IEEE
DOI:
10.1109/ssci44817.2019.9002982
Autori:
Sibghat Ullah, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Thomas Back
Pubblicato in:
2019 IEEE Symposium Series on Computational Intelligence (SSCI), 2019, Pagina/e 819-828, ISBN 978-1-7281-2485-8
Editore:
IEEE
DOI:
10.1109/ssci44817.2019.9002805
Autori:
Stephen Friess, Peter Tiňo, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Pubblicato in:
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021, ISBN 978-1-7281-9049-5
Editore:
IEEE
DOI:
10.1109/ssci50451.2021.9660001
Autori:
Sneha Saha; Leandro L. Minku; Xin Yao; Bernhard Senhoff; Stefan Menzel
Pubblicato in:
2021 IEEE Congress on Evolutionary Computation (CEC), 2021, ISBN 978-1-7281-8394-7
Editore:
IEEE
DOI:
10.1109/cec45853.2021.9504772
Autori:
Stephen Friess, Peter Tino, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Pubblicato in:
2020 IEEE Congress on Evolutionary Computation (CEC), 2020, Pagina/e 1-7, ISBN 978-1-7281-6929-3
Editore:
IEEE
DOI:
10.1109/cec48606.2020.9185687
Autori:
Duc Anh Nguyen, Anna V. Kononova, Stefan Menzel, Bernhard Sendhoff, Thomas Back
Pubblicato in:
2021 IEEE Symposium Series on Computational Intelligence (SSCI), 2021, ISBN 978-1-7281-9049-5
Editore:
IEEE
DOI:
10.1109/ssci50451.2021.9660073
Autori:
Sneha Saha, Leandro Minku, Xin Yao, Bernard Sendhoff, Stefan Menzel
Pubblicato in:
2022 International Joint Conference on Neural Networks (IJCNN), 2022
Editore:
IEEE
Autori:
Thiago Rios, Jiawen Kong, Bas van Stein, Thomas Bäck, Patricia Wollstadt, Bernhard Sendhoff and Stefan Menzel
Pubblicato in:
2020 IEEE Symposium Series on Computational Intelligence SSCI, 2020
Editore:
IEEE
Autori:
J. Kong, W. Kowalczyk, K. Jonker, S. Menzel and T. Bäck
Pubblicato in:
the 18th Int. Conference on Data Science (ICDATA’22), 2022
Editore:
Springer
Autori:
S. Ullah, H. Wang, S. Menzel, B. Sendhoff and T. Bäck
Pubblicato in:
2022 International Conference on Parallel Problem Solving from Nature, 2022
Editore:
Springer
Autori:
Duc Anh Nguyen, Jiawen Kong, Hao Wang, Stefan Menzel, Bernhard Sendhoff, Anna V. Kononova, Thomas Bäck
Pubblicato in:
2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA), 2021, ISBN 978-1-6654-2100-3
Editore:
IEEE
DOI:
10.1109/dsaa53316.2021.9564147
Autori:
Gan Ruan, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Pubblicato in:
2020 IEEE Congress on Evolutionary Computation (CEC), 2020, Pagina/e 1-8, ISBN 978-1-7281-6929-3
Editore:
IEEE
DOI:
10.1109/cec48606.2020.9185907
Autori:
Stephen Friess, Peter Tiňo, Stefan Menzel, Bernhard Sendhoff, Xin Yao
Pubblicato in:
Parallel Problem Solving from Nature – PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I, Numero 12269, 2020, Pagina/e 583-596, ISBN 978-3-030-58111-4
Editore:
Springer International Publishing
DOI:
10.1007/978-3-030-58112-1_40
Autori:
Jiawen Kong, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck
Pubblicato in:
Parallel Problem Solving from Nature – PPSN XVI - 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I, Numero 12269, 2020, Pagina/e 512-523, ISBN 978-3-030-58111-4
Editore:
Springer International Publishing
DOI:
10.1007/978-3-030-58112-1_35
Autori:
Jiawen Kong, Thiago Rios, Wojtek Kowalczyk, Stefan Menzel, Thomas Bäck
Pubblicato in:
Advances in Knowledge Discovery and Data Mining - 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part II, Numero 12085, 2020, Pagina/e 84-96, ISBN 978-3-030-47435-5
Editore:
Springer International Publishing
DOI:
10.1007/978-3-030-47436-2_7
Autori:
Thiago Rios, Bas van Stein, Patricia Wollstadt, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel
Pubblicato in:
2021 IEEE Congress on Evolutionary Computation (CEC), 2021
Editore:
IEEE
DOI:
10.1109/cec45853.2021.9504746
Autori:
Thiago Rios, Bas van Stein, Thomas Bäck, Bernhard Sendhoff, Stefan Menzel
Pubblicato in:
IEEE Transactions on Evolutionary Computation , 2021, ISSN 1089-778X
Editore:
Institute of Electrical and Electronics Engineers
DOI:
10.1109/tevc.2021.3086308
Autori:
D.A. Nguyen, A.V. Kononova, S. Menzel, B. Sendhoff and T. Bäck
Pubblicato in:
IEEE Access, 2022, ISSN 2169-3536
Editore:
Institute of Electrical and Electronics Engineers Inc.
DOI:
10.1109/access.2022.3192036
È in corso la ricerca di dati su OpenAIRE...
Si è verificato un errore durante la ricerca dei dati su OpenAIRE
Nessun risultato disponibile