Objective
Lanthanide metals are ubiquitous nowadays, finding use in luminescent materials, optical amplifiers and waveguides, lasers, photovoltaics, rechargeable batteries, catalysts, alloys, magnets, bio-probes, and therapeutic agents. In addition, they bear potential for high temperature superconductivity, magnetic refrigeration, molecular magnetic storage, spintronics and quantum information.
Surprisingly, the study of lanthanide physico-chemical properties on surfaces is at its infancy, particularly at the nanoscale. To address this extraordinary scientific opportunity, I will research the foundations and prospects of lanthanide elements to design functional nanoarchitectures on surfaces and I will study their inherent physico-chemical phenomena in distinct coordination environments, targeting novel approaches for sensing, nanomagnetism and electroluminescence. Importantly, our studies will encompass both metal substrates and decoupling surfaces including ultra-thin film insulators and graphene. Nurturing from these studies and in parallel, we will focus on graphene voltage back-gated supports, thus surpassing the seminal knowledge on electrically-inert substrates and enhancing the scope of our research to address the overarching objective of the proposal, i.e. the design of electrically tunable functional lanthanide nanomaterials.
The culmination of ELECNANO project will provide strategies for:
1.-Design of functional nanomaterials on high-technological supports.
2.-Development of advanced coordination chemistry on surfaces.
3.-Rationale of the physico-chemical properties of lanthanide-coordination environments.
4.-Engineering of lanthanide nanoarchitectures for ultimate sensing, nanomagnetism and electroluminescence.
5.-In-situ atomistic views of electrically tunable materials and unprecedented fundamental studies of charge-molecule/metal physics on devices.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences electromagnetism and electronics spintronics
- natural sciences chemical sciences catalysis
- natural sciences physical sciences optics laser physics
- natural sciences physical sciences electromagnetism and electronics superconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28049 Madrid
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.