Objective
For the latest generation of micro-fabricated devices that are currently being developed, no suitable in-line production inspection equipment is available, simply because current inspection equipment expects planar processing while most of the devices are often highly 3D in nature e.g. medical. This lack of automated processing feedback makes it difficult to steer process development towards higher yields in micro-components and MEMS production. Another visible problem is the need to document and record process data, even on the individual device level, with the degree of traceability as is required for example, for medical devices fabricated under ISO13485. Both factors in the end limit the possibility of reliable and cost effective manufacturing of MEMS and micro-components.
Thus, CITCOM has been proposed to address the industrial needs of MEMS and micro-manufacturing which will offer an in-line production inspection and measurement system for micro-components. The system will be developed and demonstrated at TRL7. The system will be based on optical and X-ray techniques combined with computer tomography and advance robotic system capable of analyzing defects that occur in production of micro components e.g. stains, debris, fracture, abnormal displacements, chemical composition of surface coatings, surface traces etc. enabling 98% yield and 100% reliability.
Ultimately, CITCOM will cut such costs by 60% as it will offer a system with automated knowledge and inspection data based process feedback that will allow the detection and traceability of faults that may occur in MEMS production, especially for critical applications like aerospace, space and healthcare.
CITCOM will give Europe a technological and competitive advantage in the growing manufacturing and production industry. The consortium behind this action is strongly driven by industrial need and problem having Philips and Microsemi as end users and validators of the technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering waste management waste treatment processes recycling
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
- natural sciences computer and information sciences software software development
- engineering and technology materials engineering coating and films
- engineering and technology other engineering and technologies microtechnology organ on a chip
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.5. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.5.1. - Technologies for Factories of the Future
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
IA - Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-IND-CE-2016-17
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2000 NEUCHATEL
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.