Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Characterizing the fitness landscape on population and global scales

Objective

The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-COG

See all projects funded under this call

Host institution

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 998 280,00
Address
Am Campus 1
3400 KLOSTERNEUBURG
Austria

See on map

Region
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 998 280,00

Beneficiaries (1)

My booklet 0 0