Objective
The fitness landscape, the representation of how the genotype manifests at the phenotypic (fitness) levels, may be among the most useful concepts in biology with impact on diverse fields, including quantitative genetics, emergence of pathogen resistance, synthetic biology and protein engineering. While progress in characterizing fitness landscapes has been made, three directions of research in the field remain virtually unexplored: the nature of the genotype to phenotype of standing variation (variation found in a natural population), the shape of the fitness landscape encompassing many genotypes and the modelling of complex genetic interactions in protein sequences.
The current proposal is designed to advance the study of fitness landscapes in these three directions using large-scale genomic experiments and experimental data from a model protein and theoretical work. The study of the fitness landscape of standing variation is aimed at the resolution of an outstanding question in quantitative genetics: the extent to which epistasis, non-additive genetic interactions, is shaping the phenotype. The second aim of characterizing the global fitness landscape will give us an understanding of how evolution proceeds along long evolutionary timescales, which can be directly applied to protein engineering and synthetic biology for the design of novel phenotypes. Finally, the third aim of modelling complex interactions will improve our ability to predict phenotypes from genotypes, such as the prediction of human disease mutations. In summary, the proposed study presents an opportunity to provide a unifying understanding of how phenotypes are shaped through genetic interactions. The consolidation of our empirical and theoretical work on different scales of the genotype to phenotype relationship will provide empirical data and novel context for several fields of biology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences synthetic biology
- natural sciences biological sciences biochemistry biomolecules proteins
- natural sciences biological sciences genetics mutation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.