Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Stability Conditions, Moduli Spaces and Enhancements

Objectif

I will introduce new techniques to address two big open questions in the theory of derived/triangulated categories and their many applications in algebraic geometry.

The first one concerns the theory of Bridgeland stability conditions, which provides a notion of stability for complexes in the derived category. The problem of showing that the space parametrizing stability conditions is non-empty is one of the most difficult and challenging ones. Once we know that such stability conditions exist, it remains to prove that the corresponding moduli spaces of stable objects have an interesting geometry (e.g. they are projective varieties). This is a deep and intricate problem.

On the more foundational side, the most successful approach to avoid the many problematic aspects of the theory of triangulated categories consisted in considering higher categorical enhancements of triangulated categories. On the one side, a big open question concerns the uniqueness and canonicity of these enhancements. On the other side, this approach does not give a solution to the problem of describing all exact functors, leaving this as a completely open question. We need a completely new and comprehensive approach to these fundamental questions.

I intend to address these two sets of problems in the following innovative long-term projects:

1. Develop a theory of stability conditions for semiorthogonal decompositions and its applications to moduli problems. The main applications concern cubic fourfolds, Calabi-Yau threefolds and Calabi-Yau categories.

2. Apply these new results to the study of moduli spaces of rational normal curves on cubic fourfolds and their deep relations to hyperkaehler geometry.

3. Investigate the uniqueness of dg enhancements for the category of perfect complexes and, most prominently, of admissible subcategories of derived categories.

4. Develop a new theory for an effective description of exact functors in order to prove some related conjectures.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-COG - Consolidator Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2017-COG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

UNIVERSITA DEGLI STUDI DI MILANO
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 785 866,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 785 866,00

Bénéficiaires (1)

Mon livret 0 0