Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Stability Conditions, Moduli Spaces and Enhancements

Cel

I will introduce new techniques to address two big open questions in the theory of derived/triangulated categories and their many applications in algebraic geometry.

The first one concerns the theory of Bridgeland stability conditions, which provides a notion of stability for complexes in the derived category. The problem of showing that the space parametrizing stability conditions is non-empty is one of the most difficult and challenging ones. Once we know that such stability conditions exist, it remains to prove that the corresponding moduli spaces of stable objects have an interesting geometry (e.g. they are projective varieties). This is a deep and intricate problem.

On the more foundational side, the most successful approach to avoid the many problematic aspects of the theory of triangulated categories consisted in considering higher categorical enhancements of triangulated categories. On the one side, a big open question concerns the uniqueness and canonicity of these enhancements. On the other side, this approach does not give a solution to the problem of describing all exact functors, leaving this as a completely open question. We need a completely new and comprehensive approach to these fundamental questions.

I intend to address these two sets of problems in the following innovative long-term projects:

1. Develop a theory of stability conditions for semiorthogonal decompositions and its applications to moduli problems. The main applications concern cubic fourfolds, Calabi-Yau threefolds and Calabi-Yau categories.

2. Apply these new results to the study of moduli spaces of rational normal curves on cubic fourfolds and their deep relations to hyperkaehler geometry.

3. Investigate the uniqueness of dg enhancements for the category of perfect complexes and, most prominently, of admissible subcategories of derived categories.

4. Develop a new theory for an effective description of exact functors in order to prove some related conjectures.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

ERC-COG - Consolidator Grant

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) ERC-2017-COG

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Instytucja przyjmująca

UNIVERSITA DEGLI STUDI DI MILANO
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 785 866,00
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 785 866,00

Beneficjenci (1)

Moja broszura 0 0