Objetivo
Medication errors are the most common cause of adverse events in medication practice, although they are preventable. Only in Europe, prescription error rates range from 7.5% to 9.1% of the total managed medicines, representing a major public health issue, as some of those can even be fatal. They also represent a great economic burden to healthcare systems, with annual costs reaching €4.5B to €21.8B depending on the country. MedAware’s founders decided to take action on the theme in 2012, when they found out that a nine-year-old boy died simply because his primary care physician accidentally selected the wrong drug, on his electronic prescribing pull-down list. By realising that current solutions completely failed to save this boy, the team started developing several proof-of-concept algorithms that became our first prototype and then MedAS (MedAware Alerting System). MedAS is an innovative patient-specific Clinical Decision Support System, that identifies and alerts on prescription errors in real-time, and with greater than 80% accuracy. It utilizes big-data analytics and advanced machine learning to identify statistical outliers and to generate precise alerts that would otherwise be missed by existing CDSS. MedAS’s effectiveness has already been proven both in retrospective trials and in real medical facilities in Israel and the USA: we improved patient safety, outcomes, and experience while dramatically reducing healthcare costs. Enabled by our next generation technology and given MedAS’s unique capabilities, we now intend to build a solid technology platform and to deploy it to the European market. The main objective of the feasibility study is to assess MedAS from technical, commercial and financial perspectives. We will seize the opportunity to enter the constantly growing CDSS market (€51.8M in Europe by 2018) with our novel technology and platform, and estimate revenues of €22.1M by 2024, with a ROI of 8.9
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias médicas y de la saludciencias de la saludsalud pública y medio ambiental
- ciencias médicas y de la saludmedicina básicafarmacología y farmaciamedicamento
- ciencias naturalesinformática y ciencias de la informaciónciencia de datosmacrodatos
- ciencias naturalesinformática y ciencias de la informacióninteligencia artificialaprendizaje automático
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEINST-1-2016-2017
Régimen de financiación
SME-1 - SME instrument phase 1Coordinador
4366238 RAANANA
Israel
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.