Objective
Missions from space for high-resolution earth observation (including greenhouse gases monitoring) require optical sensors covering both Visible channels and the Short Wavelength InfraRed band (SWIR). For SWIR optical sensors, the current approach in Europe is HgCdTe N/P sensors cooled to cryogenic temperature. SWIRup is aiming at developing an alternative photosensitive material to current HgCdTe N/P sensors. It will focus on InGaAs/GaAsSb super-lattice lattice matched to InP substrate, named III-V.
The objective is to push the cut off wavelength up to 2,5µm (currently limited to 1,7) adding SWIR bands to the common VISIBLE channels generally proposed on instruments dedicated to earth observation from space. The SWIRup sensor technologies will also provide alternatives to HgCdTe N/P detectors for commercial applications in the SWIR spectral range, such as hyperspectral imaging systems (for airborne, field applications) and Lidar (or active imaging applications).
The 2nd objective is to achieve high operating temperature for focal plane arrays, to be the closest possible to room temperature (230 to 290K) compared to the typical 200-210K for current HgCdTe detectors. This will eliminate cryogenic cooling, improving miniaturization, power reduction, efficiency and versatility of the optical payloads, all of which could provide room for increased functionality.
The SWIRup technology will be compared to the current reference II-VI technology which is the HgCdTe P/N material, leading to a technology prioritization by type of application, as each material has its own advantages. This II-VI material, already optimized for cooled astronomical application, will be improved to work at higher temperature. The proposal includes the manufacturing and tests of 2D arrays with sensitive module using the new III-V technology and with the II-VI technology. Reaching TRL5 at the end, the highest performance of the 2 technologies will enter industrialization phase and be integrated.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors optical sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.6. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Space
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.2.1.6.1. - Enabling European competitiveness, non-dependence and innovation of the European space sector
See all projects funded under this programme -
H2020-EU.2.1.6.2. - Enabling advances in space technology
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-COMPET-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
31100 TOULOUSE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.