Objective
Large scale deployment of renewable energy (RE) is key to comply with the GHG emissions reduction set by the COP21 agreement. Despite cost competitive in many settings, RE diffusion remains limited largely due to its variability. This works as a major barrier to RE’s integration in electricity networks as knowledge of power output and demand forecasting beyond a few days remains poor. To help solve this problem, S2S4E will offer an innovative service to improve RE variability management by developing new research methods exploring the frontiers of weather conditions for future weeks and months. The main output of S2S4E will be a user co-designed Decision Support Tool (DST) that for the first time integrates sub-seasonal to seasonal (S2S) climate predictions with RE production and electricity demand. To support the dissemination of climate services, a pilot of the DST will be developed in two steps. The first will draw on historical case studies pointed as relevant by energy companies - e.g. periods with an unusual climate behaviour affecting the energy market. The second step will improve probabilistic S2S real-time forecasts built up into the DST and assess their performances in real life decision-making in these companies. This process will be co-designed with consortium’s partners which represent different needs and interests in terms of regions, RE sources (wind, solar and hydro) and electricity demand. Besides the partners, S2S4E will engage other users from the energy sector as well as other business areas and research communities to further explore DST application and impact. As a result, DST will enable RE producers and providers, electricity network managers and policy makers to design better informed S2S strategies able to improve RE integration, business profitability, electricity system management, and GHG emissions’ reduction. The long-term objective is to make the European energy sector more resilient to climate variability and extreme events.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology environmental engineering energy and fuels renewable energy
- engineering and technology electrical engineering, electronic engineering, information engineering electrical engineering power engineering electric power distribution
- engineering and technology civil engineering water engineering irrigation
- natural sciences earth and related environmental sciences atmospheric sciences meteorology solar radiation
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.5. - SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.5.1. - Fighting and adapting to climate change
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-SC5-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08034 Barcelona
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.