Objective
Autonomous vehicles, although in its early stage, have demonstrated huge potential in shaping future life styles to many of us. However, to be accepted by ordinary users, autonomous vehicles have a critical issue to solve – this is trustworthy collision detection. No one likes an autonomous car that is doomed to a collision accident once every few years or months. In the real world, collision does happen at every second - more than 1.3 million people are killed by road accidents every single year. The current approaches for vehicle collision detection such as vehicle to vehicle communication, radar, laser based Lidar and GPS are far from acceptable in terms of reliability, cost, energy consumption and size. For example, radar is too sensitive to metallic material, Lidar is too expensive and it does not work well on absorbing/reflective surfaces, GPS based methods are difficult in cities with high buildings, vehicle to vehicle communication cannot detect pedestrians or any objects unconnected, segmentation based vision methods are too computing power thirsty to be miniaturized, and normal vision sensors cannot cope with fog, rain and dim environment at night. To save people’s lives and to make autonomous vehicles safer to serve human society, a new type of trustworthy, robust, low cost, and low energy consumption vehicle collision detection and avoidance systems are badly needed.
This consortium proposes an innovative solution with brain-inspired multiple layered and multiple modalities information processing for trustworthy vehicle collision detection. It takes the advantages of low cost spatial-temporal and parallel computing capacity of bio-inspired visual neural systems and multiple modalities data inputs in extracting potential collision cues at complex weather and lighting conditions.
Field of science
- /engineering and technology/mechanical engineering/vehicle engineering/automotive engineering/autonomous vehicle
- /engineering and technology/electrical engineering, electronic engineering, information engineering/information engineering/telecommunications/radio technology/radar
- /natural sciences/computer and information sciences/data science/data processing
Call for proposal
H2020-MSCA-RISE-2017
See other projects for this call
Funding Scheme
MSCA-RISE - Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)Coordinator
LN6 7TS Lincoln
United Kingdom
Participants (6)
20148 Hamburg
NE1 7RU Newcastle Upon Tyne
48149 Muenster
N1 7GU London
76229 Karlsruhe
82205 Munchen
Partners (11)
100084 Beijing
71049 Xi'an
430074 Wuhan
710072 Xi An
1053 Buenos Aires
183 8538 Fuchu Shi Tokyo
43400 Selangor Darul Ehsan
524048 Zhanjiang Guangdong
550025 Guiyang
100080 Beijing
510006 Guangzhou