Objective
Edge computing requires highly energy efficient microprocessor units (MCU) with embedded non-volatile memories (eNVM) to process data at the source that is the IoT sensor node. eFLASH technology is limited by low write speed, high power and low endurance. Alternative fast, low power and high endurance eNVM could greatly enhance energy efficiency and allow flexibility for finer grain of logic and memory. FeRAM has the highest endurance of all emerging NVMs. However, perovskite-based eFeRAM is incompatible with Si CMOS, does not easily scale and has manufacturability and cost issues.
We introduce new ferroelectric material Hf(Zr)O2 to make FeRAM competitive NVM candidate for IoT. HfO2 compatibility with Si processing will facilitate integration, improve manufacturability and allow better scaling. Different cell architectures based on capacitors or ferroelectric FETs will give unprecedented flexibility for “fine-grained” logic –in-memory (LiM) circuits, which allows data storage close to logic circuits, reduces energy cost of data transfer and allows smart gating for “normally-off” computing.
The project is built around four objectives: i) Optimization of Materials, ii) LiM design & architecture, iii) Integration of Hf(Zr)O2-based NVM arrays, iv) Memory test & validation & benchmarking. The work calls on the full spectrum of expertise from advanced materials synthesis and characterization, processing, design and integration and benchmarking to make substantial progress towards a truly disruptive energy efficient memory and logic technology.
A team of 8 partners, including a major European semiconductor company, the leader in the field of ferroelectric HfO2 and a large technology laboratory, originating from 5 EU states, will join forces to deliver experimental demonstrators creating the opportunity for the EU industry to establish a dominant position in IoT innovative components market and make an impact on the future roadmap for embedded systems and applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology civil engineering urban engineering smart cities
- natural sciences computer and information sciences internet internet of things
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware computer processors
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-ICT-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75015 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.