Objective
Terrestrial ecosystems respond to changes in climate and the atmospheric environment, which they in turn help to regulate. As global change has become an international concern, high expectations have been laid on Earth system models with embedded ecosystem and biophysical land-surface components to deliver reliable, quantitative predictions of large-scale changes in ecosystems and their feedbacks to the climate system. But the lack of established quantitative theory for many fundamental processes – such as the long-term effects of temperature on primary production and carbon allocation, the sustainability and nutrient requirements of CO2 ‘fertilization’, and the regulation of green vegetation cover and its water use – has made such expectations impossible to fulfil. As a result, numerical models of land ecosystem processes continue stubbornly to disagree both with one another, and with benchmark data sets.
This impasse can be overcome, but not without re-thinking modelling practice. Theory must be re-instated as the required link between observations and models. Multidisciplinary data resources now available should be used far more extensively and creatively. Observational and experimental results should be integral to model development, not merely used for ‘end-of-pipe’ testing of complex, poorly constrained models. I propose to develop a comprehensive, next-generation vegetation model using eco-evolutionary optimality hypotheses to generate testable predictions, and multiple data sources to provide tests. Initial results have demonstrated the remarkable power of this ‘strong inference’ approach to explain patterns seen in nature. The project will transform the practice of global vegetation and land-surface modelling and in doing so, establish the foundations of a more robust, quantitative understanding of the role of terrestrial ecosystems in Earth System dynamics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2017-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.