Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Data-intensive analysis of seismic tremors and long period events: a new paradigm for understanding transient deformation processes in active geological systems

Objective

Seismic tremors form a broad class of signals generated by internal sources that are different from regular earthquakes. Volcanic tremors have been known for a long time, and tectonic tremors associated with seismogenic fault zones have been described more recently. While the physical origin of seismic tremors remains to be fully understood, they are related to slow transient energy release processes that occur in active geological systems during the accumulation of mechanical energy that is then released during catastrophic events, such as strong earthquakes or volcanic eruptions. Therefore, seismic tremors represent a unique source of information that can be used to understand the physics of these ‘preparation’ processes and to design new monitoring and forecasting approaches.

Modern digital seismological networks record huge numbers of tremors in different active regions, and breakthroughs can be achieved with systematic exploration of these observations that includes data analysis and physical modeling. My goal is to undertake such an effort via the development of a new unified framework for the study of seismic tremors. I plan to combine advanced methods for data mining, signal processing, and numerical simulations of the generating processes, to apply these to different large datasets of volcanic and tectonic tremors.

I will develop an innovative and holistic approach based on massive analysis of observations that requires high performance computing and will be combined with advanced physical modeling of the generating dynamical processes. This will produce the new framework that can be used on the one hand for an understanding of the physical tremor-generating mechanisms, and on other hand for the development of new adaptive methods for monitoring volcanoes and seismic faults. The implementation of these will involve machine learning approaches to gain information from continuous fluxes of data from dense seismological networks.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2017-ADG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 490 000,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 490 000,00

Beneficiaries (1)

My booklet 0 0