Objective
In algebraic geometry one tries to understand and explain geometric phenomena of zerosets of polynomial equations (algebraic varieties) with algebraic techniques. Singularities of algebraic varieties are, roughly speaking, points of indeterminacy, where most analytical methods collapse. Geometrically, this corresponds e.g. to cusps or crossing points. In a practical example, the arm of a robot can break if it passes through a singular point, which could result in a complete breakdown of the system. Such a situation should be avoided by theoretical considerations.
This project lies at the intersection of singularity theory, (non-commutative) algebraic geometry, commutative algebra, and representation theory. The main goal is to develop homological methods to understand geometric phenomena of algebraic varieties in the presence of singularities and use them to study representation theoretic concepts such as cluster categories and friezes. The project will provide a bridge between these seemingly distant areas that can be exploited in both directions.
The specific research objectives:
(1) Construction of noncommutative (crepant) resolutions of singularities (NC(C)Rs), in particular for not necessarily normal varieties/rings: computation of global dimension, application to positive characteristic (global dimension of ring of differential operators)
(2) McKay correspondence for reflection groups: study of the geometry of discriminants of pseudo-reflection groups and their relation to the representation theory of the groups, characterization of McKay quivers
(3) Friezes and singularities: show how (higher) integral friezes can be constructed from cluster categories and categories of maximal Cohen-Macaulay modules
The project will be carried out by Eleonore Faber, supervised by Robert Marsh at the University of Leeds. Apart from the scientific value, this project should serve to integrate Faber in the algebra research group and to establish her as a research leader.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
- natural sciencesmathematicspure mathematicsalgebracommutative algebra
- natural sciencesmathematicspure mathematicsgeometry
- natural sciencesmathematicspure mathematicsalgebraalgebraic geometry
You need to log in or register to use this function
Programme(s)
Funding Scheme
MSCA-IF-EF-ST - Standard EFCoordinator
LS2 9JT Leeds
United Kingdom