Objective One of the important shortcomings of modern anticancer therapies is their limited penetration depth of only a few cell layers into the tumor. Concentrated around the heterogeneous vasculature, these drugs produce only a local therapeutic effect. In this project we propose a method of overcoming this limitation by engineering a novel class of gas-filled nanostructures capable of homing to tumor tissues, and using their vibration in response to ultrasound energy to deliver drugs deeper into the tumor core. The proposed approach is based on ultrasonic cavitation, a phenomenon in which gas bubbles expand and collapse under the influence of ultrasound waves. This process produces fluid streaming that propels drugs deeper into the tumor mass. The use of ultrasound for drug delivery is attractive due to its availability and affordability. However, the use of this technology is currently limited by the properties of conventional microbubble-based cavitation nuclei: their large size prevents them from penetrating into the tumor and their short circulation times do not match the pharmacokinetic time constants of many drugs. To overcome these challenges, we will utilize gas vesicles (GVs), a unique class of genetically encoded, gas-filled protein nanostructures derived from buoyant photosynthetic microbes, as cavitation nuclei. Unlike microbubbles, GVs are physically stable and their nanoscale dimensions have the potential to enable them to extravasate into tumors and bind to specific cellular targets. We hypothesize that GVs can act as both imaging agents and cavitation nuclei. If so, this therapeutic approach could have vastly improved efficacy and selectivity and the potential to combine cavitation-enhanced drug delivery with emerging advancements in cell based therapeutics. This project will enable the applicant to diversify his capabilities and experience beyond ultrasound imaging and signal processing and re-inforce a position of professional maturity. Fields of science engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsignal processingnatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsnatural sciencesphysical sciencesacousticsultrasound Keywords acoustic nanostructures drug delivery cancer cavitation contrast agents gas vesicles genetic engineering molecular imaging protein engineering ultrasound cancer therapy cavitation nuclei Programme(s) H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions Main Programme H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility Topic(s) MSCA-IF-2017 - Individual Fellowships Call for proposal H2020-MSCA-IF-2017 See other projects for this call Funding Scheme MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF) Coordinator TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD Net EU contribution € 263 385,00 Address The senate building technion city 1 32000 Haifa Israel See on map Activity type Private for-profit entities (excluding Higher or Secondary Education Establishments) Links Contact the organisation Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Partners (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all Partner Partner organisations contribute to the implementation of the action, but do not sign the Grant Agreement. CALIFORNIA INSTITUTE OF TECHNOLOGYCORP United States Net EU contribution € 0,00 Address East california boulevard 1200 91125 Pasadena See on map Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 172 130,40