Objective
Wireless powered communication network (WPCN) is a promising networking paradigm for future wireless communication systems, where the batteries of wireless devices (WDs) are remotely replenished by means of microwave wireless power transfer (WPT) technology. Compared to the conventional battery-powered communication networks, WPCN is in general more convenient by eliminating the hassle of connecting cables, more cost-effective by enabling on-demand energy supplies and maintenance-free operations, more environmental-friendly by avoiding tons of battery disposal yearly, and is sometimes essential for scenarios where manual battery replacement/recharging is too dangerous (e.g. in hazardous environment) or even impossible (e.g. for biomedical implants). However, the practical deployment of WPCN is hampered by several critical issues, such as the low end-to-end WPT efficiency over a long distance, the inter-play between power and information transmissions within the same network, and the challenges of scalability in large networks. This project aims to resolve the above issues by paving the way for the practical deployment of WPCN. Towards this end, a comprehensive study on WPCN will be pursued, ranging from the networking architecture and protocol designs to optimized resource allocation. A number of innovative techniques will be proposed and thoroughly investigated in this project, including the new heterogeneous networking architecture for WPCN, the harvest-and-transmit protocol facilitated by the concept of energy-and-information full-duplexing, and the distributed energy beamforming technique with the idea of WD-initiated WPT. The results obtained in this project will find a wide range of applications in the fifth generation (5G) wireless communication system, which involves numerous low-power WDs, including those in wireless sensor networks (WSNs), internet of things (IoT), and massive machine-type communications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- natural sciences computer and information sciences internet internet of things
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors smart sensors
- medical and health sciences medical biotechnology implants
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SO17 1BJ SOUTHAMPTON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.