Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Colloidal particles in elasto-capillary fields

Project description

Unveiling new properties of colloidal particles

Colloids are solid, liquid or gas microscopic particles that are dispersed in a medium and are used in drug delivery systems, for environmental monitoring and material synthesis, as well as constituents of foods. Funded by the Marie Skłodowska-Curie Actions programme, the CoPEC project aims to investigate the physical properties of colloidal particles attached to liquid crystal interfaces, an area that remains largely unexplored. Researchers will use computer simulations to investigate how the particles behave, how they interact with each other, and how they organise themselves. By studying these interactions, they hope to discover new and interesting properties that could help in designing materials with unique functions.

Objective

An ambitious and rich project is proposed to advance knowledge in the field of soft condensed matter Physics, and more particularly in the area of colloids and complex fluid interfaces. The main task of this proposal of fundamental nature is to investigate the physical properties of colloidal particles evolving in elasto-capillary fields, i.e. particles attached to liquid crystal interfaces. Such systems remain largely unexplored today and represent a new type of material whose properties are anticipated to be mainly governed by the coupling between capillary and elastic phenomena. Such couplings may lead to novel colloidal interactions and the subsequent discovery of new collective properties which could be exploited for designing materials with yet unknown important functions. In “CoPEC”, we will tackle the subject by using numerical simulations based on continuum theories. The objectives are to gain knowledge on (i) the behaviour of a single particle, (ii) pair interaction potentials, and (iii) self-assembly properties. We will consider solid micron-sized particles attached to both planar and curved nematic liquid crystal interfaces and vary the numerous system parameters (e.g. boundary conditions) in a systematic way. Both static and dynamic simulations will be carried out. The salient novelty of “CoPEC” is to bring together two different fields, namely the so-called (bulk) liquid crystal colloids and colloids at fluid interfaces, which have been extensively but rather independently studied so far. Capillarity, elasticity, topological defects, flow field, nematic field, interfacial deformations and interfacial curvature will be all entangled in our studies and potential breakthroughs can be reasonably expected. This innovative project will make use of the candidate’s well-recognized expertise in the above fields combined with the state-of-the-art large-scale numerical simulations on complex fluids flows of Prof. J.J. Feng at the host institution.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF-GF - Global Fellowships

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2017

See all projects funded under this call

Coordinator

UNIVERSITE DE BORDEAUX
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 232 160,40
Address
PLACE PEY BERLAND 35
33000 BORDEAUX
France

See on map

Region
Nouvelle-Aquitaine Aquitaine Gironde
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 232 160,40

Participants (1)

Partners (1)

My booklet 0 0