Objective
The magnetorotational instability (MRI) is the most promising candidate for driving turbulence, resulting in angular momentum transport and accretion in astrophysical disks, and is currently at the forefront of research. Despite enormous progress in the last decade, important issues regarding the numerical convergence, dependence of the sustenance and transport properties of MRI-turbulence on viscous and Ohmic dissipation as well as the nature of MRI–dynamo still remain unresolved. The project, going beyond the state of the art, aims at clarifying these issues by using numerical simulations and a new approach of a detailed analysis of dynamical processes in 3D Fourier space, underlying the turbulence sustenance. This study will provide a deeper insight into the dynamics, not accessible in physical space, as done in previous studies. The project is built on my recent findings in MHD turbulence in shear flows – on the new concepts of shear-induced spectral anisotropy, nonlinear transverse cascade and vital area, which lie at the basis of the sustenance of shear MHD turbulence, whose special case is MRI-turbulence in disks. This is its main originality. I will work under supervision of Prof. M. Pessah, expert in MRI, in the Niels Bohr Institute, which is an ideal place due to vast theoretical and numerical expertise of its staff in astrophysical fluid dynamics, MHD and, particularly, MRI and due to powerful computing resources. I will acquire valuable skills in: numerical methods, parallel computing, modeling of specific aspects of astrophysical fluid dynamics and (non-ideal) MHD, grant writing, etc. through advance training from the group members. This will be coupled with rich outreach/teaching programs to enhance my pedagogical skills. Thanks to the Marie Curie Fellowship, all these essential components will enable me to pursue my independent scientific career in Europe, promote my results, develop innovative projects and establish myself as a prominent scientist.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences classical mechanics fluid mechanics fluid dynamics
- natural sciences physical sciences plasma physics
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences physical sciences astronomy astrophysics black holes
- natural sciences mathematics applied mathematics numerical analysis
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1165 KOBENHAVN
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.