Objective
Dimethyl sulfide (DMS) is the most abundant organic sulfur compound emitted to the atmosphere and is considered as the ‘climate-cooling gas’. However, its microbial degradation in anoxic sediments leads to the production of methane and carbon dioxide, which are the significant greenhouse gases. Wetlands, which account for ~ 30% of the methane emissions from natural sources globally, are hotspots for DMS with concentrations up to 10µM. Better monitoring and management of wetlands in terms of methane emissions are encouraged under the EU decision No 529/2013/EU, to mitigate climate change. Anaerobic microbial communities metabolizing DMS and producing methane (methanogens) likely has a huge impact on the methane flux from wetlands. Understanding the microbial mechanisms that control the methane production from wetland sediments and including this information in climate prediction models are urgently required for devising effective strategies to comply with climate change mitigation goals. To fill this major gap in our knowledge, we designed this project around three objectives: (1) Characterize the active methanogenic populations that degrade DMS to methane in anoxic wetland sediments (2) Characterize the anaerobic DMS degradation pathway and their environmental regulation in wetland sediments. (3) Develop a model to predict the response of methanogens to temperature change in anoxic wetland sediments. These will be achieved using state-of-the-art microbial ecology techniques (stable isotope probing-sequencing) combined with statistical modelling, which makes this project highly novel and competitive. The outcomes of this project will advance our understanding of the role of microbial communities on methane emissions from wetlands and their response to the temperature rise. Hence, they will further advance the European excellence in the fields of microbial ecology and climate change.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences ecology
- natural sciences chemical sciences organic chemistry aliphatic compounds
- natural sciences earth and related environmental sciences atmospheric sciences climatology climatic changes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
E1 4NS LONDON
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.