Project description
Optimising 5G mobile networks with mathematical modelling
Groundbreaking changes are required in the design and management of mobile networks to meet the demands of increasing network traffic and heterogeneous 5G services. At the same time, mobile networks must meet sustainability requirements through energy-efficient design and the incorporation of renewable energy sources into the infrastructure. The MSCA MAPNET project aims to develop innovative mathematical modelling techniques for 5G networks that will provide high-capacity, high-speed, low-latency services, while satisfying requirements for low environmental impact. It will develop mathematical models of ultra-dense networks with maximum energy-efficiency and a programmable network interface for network slicing and drone deployment, factoring in renewable energy sources.
Objective
The exponential increase in mobile data traffic warrants disruptive changes in the design and management of cellular networks. The next generation (5G) networks target to support a variety of applications having diverse requirements in data rates, latency, energy, etc. To address this surge in traffic demand and the associated heterogeneity in service requirements, several candidate technologies are being investigated under the 5G vision, naming a few: 1) Ultra-dense network deployment for high spatial capacity; 2) Network slicing to support heterogeneous service requirements; and 3) Cloud radio access networks (CRAN), etc. An important element of the 5G vision is to achieve a 50% reduction in the total network energy consumption. To ensure that the future networks meet both the service and the sustainability requirements, energy-efficient designs and integration of renewable-energy sources into the network infrastructure are needed. To address the sudden capacity demands, on-demand network deployment is desired, instead of maintaining a permanently over-engineered infrastructure. Inclusion of these approaches result in highly complex and stochastic network topologies. Modeling and optimizing such networks is a challenging problem. State-of-the-art approaches are not adequate to model these new scenarios, and different mathematical techniques are required. This proposal addresses the optimization and modelling challenges pertaining to the energy efficiency and service requirements of the future ultra-dense networks by: 1) The development of novel energy-efficiency models to ensure energy–neutral network operation considering renewable energy sources; 2) Innovative modeling framework for self-organized drone-assisted network infrastructure; 3) A unified programmable network interface for network slicing considering renewable energy and on-demand drone deployments; and 4) Validation of the developed approaches in a software-defined mobile network platform.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- engineering and technology environmental engineering energy and fuels renewable energy
- engineering and technology environmental engineering ecosystem-based management climatic change mitigation
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics autonomous robots drones
- natural sciences mathematics applied mathematics mathematical model
You need to log in or register to use this function
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75794 PARIS
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.