Objective
ADAM5 aims to advance the development of the composite of three concepts: Massive MIMO, post-OFDM Multicarrier Waveforms (MWF) and full-duplex (FD), a new and most promising direction in 5G & beyond. ADAM5 will substantially contribute to the development of practical solutions to enable highly spectral-efficient, very low-cost and highly energy-efficient 5G systems. ADAM5 target is to propose new digital signal processing based solutions coping with the expected 5G requirements, with a particular focus on mitigating RF impairments and reducing energy consumption of wireless devices, through a set of new algorithms and advanced techniques.
The goals of the ADAM5 are to:
1) Analyze the effect of the most essential RF impairments on the quality of future wireless communications exploiting 5G MWFs based Massive MIMO with FD capability in terms of capacity, BER and PSD.
2) Develop reliable digital signal processing based solutions to mitigate RF impairments on both the transmitter and receiver sides of 5G communication systems. This will enable extensive use of low-cost and low-power components (e.g. mMTC devices in IoT), reduced latency, flexibility to accommodate various services, simplification of the multiple access, and robustness to interference.
3) Drastically reduce the emitted RF power so that the total energy consumption of a mobile network is lowered when implemented with simple, low-power hardware. Joint optimization for MWF design and Massive MIMO precoding technique will be studied.
4) Introduce new efficient joint approach for PAPR reduction and PA linearization adapted to the more pertinent 5G MWF based Massive MIMO with FD capability. Trade-off between efficiency and linearity will be theoretically analyzed.
5) Build a laboratory measurement and prototyping system that will be used for analysis verifications and algorithm performance assessments using true-world radio signal measurements.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks mobile network 5G
- natural sciences computer and information sciences internet internet of things
- engineering and technology materials engineering composites
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering signal processing
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
75141 Paris
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.