Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Hybrid Learning Systems utilizing Sum-Product Networks

Objetivo

We have recently witnessed a considerable interest in probabilistic models within deep learning, leading to e.g. generative adversarial networks, deep generative networks, neural auto-regressive density estimators and Pixel-RNNs/CNNs. Furthermore, sum-product networks (SPNs) are a recent deep architecture with a unique advantage over the aforementioned models: they allow both exact and efficient inference, implemented in terms of simple network passes. However, SPNs are a constrained type of neural network and do not reach the full flexibility of the deep learning tool kit available to date. This calls for hybrid learning systems which exploit the superior inference properties of SPNs within other deep learning approaches.
In this project, I will investigate two such approaches. First, I will structurally combine a deep learning architecture (front-end), which extracts a representation from a set of inputs, controlling the parameters of an SPN (back-end) over a set of outputs. This yields a hybrid conditional SPN which facilitates full inference over the output space, and which is naturally applied in structural prediction tasks. Such hybrid SPNs can be expected to be highly expressive and to set new state-of-the-art results in e.g. semantic image segmentation.
The second approach is to use SPNs as variational distributions, i.e. for approximating a given target distribution by minimizing Kullback-Leibler divergence. On the one hand, this allows to capture intractable models with SPNs, with the goal to enable fast amortized approximate inference. On the other hand, this approach allows to use hybrid conditional SPNs as so-called inference networks for intractable generative models with latent variables, for the purpose of variational posterior inference and learning. This approach would represent a substantial improvement over state-of-the-art approaches, which are usually limited to expensive inference via Monte Carlo estimation.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF-EF-ST - Standard EF

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2017

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

THE CHANCELLOR MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 179 166,90
Dirección
TRINITY LANE THE OLD SCHOOLS
CB2 1TN CAMBRIDGE
Reino Unido

Ver en el mapa

Región
East of England East Anglia Cambridgeshire CC
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 179 166,90
Mi folleto 0 0