Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Comparing the Predictive Ability of Forecasting Models

Objetivo

Constructing accurate predictions on different macroeconomic variables is a key issue for any central bank and other policy making institutions. For example, obtaining accurate inflation forecasts is important for setting interest rates. These institutions typically rely on a set of models to construct their forecasts and the question that often arises is which of these models performs the best in terms of predictive ability. The purpose of this project is to show that, when strong identification on these models is lost (an issue that is prevalent in many models used for prediction), our inference based on standard tests, that compare these models' predictive accuracy, can be misleading. A policy maker could thus falsely conclude that a particular model outperforms some other models in her set of competing models. This project will answer thus the question of how to perform correct inference about predictions in the setting in which the models are affected by identification deficiencies. To this end, I propose methods that make the standard predictive ability tests robust to this issue, while appropriately accounting for the parameter estimation error. The asymptotic distribution of the statistic will be derived under loss of strong identification. Bootstrap inference will be developed in order to obtain correct critical values. Monte Carlo simulations will analyze the finite sample properties of bootstrap critical values. Empirical studies will illustrate the consequences of using a standard vs. a bootstrap critical value. Results emerging from this project, will be of interest to a large academic community, central banks and other governmental organizations - that could take-up the new knowledge for policy making, as well as businesses that produce predictions - that could improve their forecast evaluation methodologies.

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) H2020-MSCA-IF-2017

Ver todos los proyectos financiados en el marco de esta convocatoria

Coordinador

ERASMUS UNIVERSITEIT ROTTERDAM
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 165 598,80
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 165 598,80
Mi folleto 0 0