Objective
Stem cell-based therapies to cure nerve system disorders using the self-renewal and multilineage differentiation capacities of the transplanted stem cells have been drawing attention during the past decade. Especially, differentiation of mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs) into neural cells are especially investigated since early 2000’s, thanks to their being much less prone to the ethical issues and the risk of developing teratoma. However, the critical challenges are the difficulty in: (i) guiding their proper differentiation to neural cells, and (ii) tracking their fate, distribution, and migration due to the limited tracking methods. In 2015, the Stevens Group at Imperial College London (ICL) developed high-aspect ratio, porous silicon nanoneedles (pSi nNs) for in vitro and in vivo manipulation of cell behaviour. Remarkably, the nNs penetrate the cell membrane but do not damage the nucleus, instead stimulating nuclear condensation (Published in Nat. Mater., ACS Nano, etc.). However, current nNs in the Stevens Group is degradable within 48 hrs which is not ideal for long-term biological studies, especially for detecting/monitoring the cell differentiation during the culture.
Recently, the applicant (Dr Hyejeong Seong) newly developed non-porous, solid version of nNs after her joining to the Stevens Group in March 2017. The new nNs exhibited a high stability in cell culture media and buffer solutions, proving their suitability for long-term investigation of cell fate. This provides an ideal framework for manipulating and exploiting cell behaviour for longer periods as a means for understanding differentiation capacity of this promising stem cell source. Furthermore, we’re expecting that the new nNs are modifiable as conductive electronic sensors, byintegrating new nNs with non-cytotoxic electronic devices. Through these devices, cell morphologies and endogenous receptors, will be assayed without invasive immunoassay.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences medical biotechnology cells technologies stem cells
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences chemical sciences inorganic chemistry metalloids
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.