Objective
Urban soil contamination resulting from former land-use is important but challenging to measure. Direct measurements are expensive and time-consuming to acquire, making a city-wide assessment impossible. Current statistical methods for modelling the distribution of pollution in urban environments, such as kriging, often fail to do so properly, since the contamination is highly local and uncorrelated with the surroundings. The problems can be mitigated by using multi-output models, such as co-kriging, where several datasets are modelled concurrently. The methods are, however, slow to train and have limited flexibility.
DeepGeo will develop state-of-the-art methods for assessing urban soil contamination and provide an open-source software library for geostatistical data analysis, directly making the novel discoveries available to a wide audience.
DeepGeo aims to solve the mentioned problems by the use of deep Gaussian processes for estimating urban soil pollution. This recently developed class of models promises enormous flexibility and can model highly nonlinear correlations between outputs, making them far superior to standard co-kriging. They do, however, suffer from scalability issues and empirical studies show flexibility issues with increasing depth.
DeepGeo will address the scalability issue by developing new algorithms for approximate inference and for inducing sparsity. Inspired by recent advances in training of deep neural networks, specialised covariance functions that allow for deeper Gaussian process architectures will be constructed. Finally, new and improved methods for learning complicated correlations between outputs will be investigated, thus increasing the amount of information that can be gained from already available data.
By making the developed methods available as open-source software, DeepGeo seeks to reach a broad range of research fields as well as benefitting the geochemical industry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- natural sciences computer and information sciences software
- natural sciences earth and related environmental sciences environmental sciences pollution
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
CB2 1TN CAMBRIDGE
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.