Project description
Semiconductor technologies for future quantum devices
As advanced quantum devices increasingly rely on semiconductor technologies, several innovations are emerging that offer new applications. The EU-funded PIEDMONS project aims to address the design and manufacturing of the fundamental building blocks of future affordable quantum devices. Specifically, ion traps based on MEMS fabrication technology will be developed and tested. The ion traps’ 3D microstructured architecture will enable 10 times stronger ion confinement than standard ion traps and therefore allow for reliable operation at room temperature. Finally, PIEDMONS will investigate potential safe and secure architectures in the consumer nomadic devices market, with a specific focus on the mobility sector.
Objective
The PIEDMONS project addresses breakthrough innovations for the design and manufacturing of affordable new generation quantum devices:
• The development and the testing of a portable ion-trap reproducible in large scale, and based on low-cost semiconductor MEMS technologies.
• The development and testing of a novel quantum secured partioned Electric Electronic architecture exploitatable in a multitude of sectors
With INFINEON Technologies, world leader in MEMS semiconductors, and two leading edge University in the field of Quantum computing (University of Innsbruck and ETH Zurich) the PIEDMONS project aims to the ambitious and long-term, but at the same way concrete and plausible goal of designing, implementing, experimenting and finding first applications for the basic building blocks of future quantum computers. Thanks to the experience of a high-tech SME (IFEVS) well known in the European Research Arena, it aims to the challenging objective of implementing first applications of these technologies in the huge market of consumer nomadic devices safe and secure, firstly in the mobility sector.
The expected results of the project will establish the baseline of new scientific and technological research and future uses, which cannot yet be anticipated, but for sure will strengthen the European leadership in a sector that is expected to be strategical over the forthcoming decades. Demonstration of the feasibility of GPS-free positioning, portable atomic clocks, quantum cryptography and security in the short distance are the very challenging objectives in which the PIEDMONS project will measure and validate its performances. The project will involve a large audience and diverse actors in the scientific community and in the stakeholders through ad-hoc dissemination actions, while at the same time generating and preserving strategic Intellectual Property.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering fibers
- natural sciences computer and information sciences computer security cryptography
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics semiconductivity
- natural sciences physical sciences optics fibre optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2016-2017
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9500 Villach
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.