Objective
The arrival of ALMA and JWST could revolutionize our understanding of planet formation from the observations of protoplanetary disks. But in order to interpret such observations, better models fed by robust laboratory data are urgently needed. However, laboratory experiments designed to study cosmic matter have mostly focused on the first stages of stellar evolution, where molecular clouds are irradiated by ultraviolet (UV) photons from OB stars. The subsequent protoplanetary stage, where young stars vigorously emit X-rays, has been rarely addressed by experiments. Yet X-rays have a larger penetration depth in solids than UV photons, and could enable important photochemical pathways in the evolution of protoplanetary matter. In this project, we aim to quantify the impact of X-rays on protoplanetary dust via laboratory astrophysics. Our goal is to give closure to the question: how do X-rays impact disk evolution and early planet formation?
This project will go beyond the state-of-the-art in two directions: via the laboratory simulation of the X-ray spectrum of T Tauri stars, and by pioneering the use of heterogeneous analogs to protoplanetary dust. We will perform a coupled study of both the dust and gas phases following irradiation to quantify the full impact of X-rays. Complex organic molecules resulting from X-ray irradiation and desorption will be compared to cometary and ALMA detections to clarify the disk-comet connection. Analysis of the X-irradiated solids will elucidate the physico-chemical mechanisms of dust growth, key to the evolution of primordial seeds to planetesimals. X-ray photochemical rates on both the dust and gas phases will be consolidated in a new X-ray Astrochemical Database (XRAD). Our laboratory data will shed light on the photochemical evolution of protoplanetary disks and more generally, on other X-ray Dominated Regions in the universe.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences databases
- natural sciences physical sciences astronomy planetary sciences planets
- natural sciences physical sciences astronomy astrophysics
- natural sciences physical sciences theoretical physics particle physics photons
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
91190 GIF-SUR-YVETTE
France
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.