Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Deciphering Bacteria-induced Morphogenesis and Protection in marine Eukaryotes

Project description

Role of symbiotic bacteria in marine eukaryote morphogenesis

Symbiosis with bacteria is pivotal in animal evolution, development, and metabolism. A widespread phenomenon, involving cross-kingdom signalling molecules, is the bacteria-induced recruitment and morphogenesis of marine organisms during larva conversion into adult animals. The marine colonial hydroid Hydractinia echinata (H. echinata) reproduces through a larval stage and requires unknown bacterial morphogenic signals from the bacterial biofilms, to transform into the mature organism. The EU-funded MORPHEUS project aims to study the chemical and biomolecular basis of bacteria-induced morphogenesis as a new marine model system, focusing on H. echinata-bacteria symbiosis. The project objectives include an investigation of how the bacterial signals are perceived and trigger larval recruitment and metamorphosis and how the system is protected against alien species.

Objective

Symbiotic bacteria play critical roles in animal evolution, development and metabolism. The molecular and cellular mechanisms underlying these fundamental interactions, however, are largely unknown.

To fill this major knowledge gap, I will establish the bacteria-Hydractinia symbiosis as a new model system to fully characterize key cross-kingdom signalling molecules and response mechanisms. The results of my ERC proposal (MORPHEUS) will lead to ground-breaking insights into molecular drivers of eukaryotic morphogenesis, illuminate the evolutionary history of developmental signals for animals – including humans – and provide new chemical scaffolds with intrinsic biological activities that are urgently needed for drug discovery.

The marine colonial hydroid Hydractinia belongs to an early branching metazoan lineage, dating back more than 500 million years. The organism reproduces through a larval stage, which upon perception of yet unidentified bacterial morphogenic signals, produced within marine bacterial biofilms, undergoes transformation into the mature organism. In the absence of the bacterial signals, the larva fails to settle and eventually dies. This fundamental process is the basis of this proposal. Capitalizing from my recent pioneering work, I will address the following pressing research questions: Which bacterial signals ensure larval recruitment and metamorphosis? How are bacterial signalling molecules perceived? How is the system protected against alien species? I will apply an innovative combination of state-of-the-art methodologies developed within the fields of natural product and synthetic organic chemistry, microbiology and molecular biology to pursue an in-depth biochemical analysis of this paradigmatic system. Results of MORPHEUS will be transformative for many scientific branches across biological and chemical disciplines, and directly impact the development of sustainable anti-biofouling and drug discovery strategies.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-STG

See all projects funded under this call

Host institution

HELMHOLTZ-ZENTRUM FUR INFEKTIONSFORSCHUNG GMBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 627 706,75
Address
INHOFFENSTRASSE 7
38124 Braunschweig
Germany

See on map

Region
Niedersachsen Braunschweig Braunschweig, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 627 706,75

Beneficiaries (1)

My booklet 0 0