We have tested a variety of different nanomaterials and explored their potential towards application in fast optical transceivers. This includes PbS, CuS and CdSe nanocrystals as well as Au nanoclusters. Most notably, we found that the surfaces of CdSe (
https://arxiv.org/abs/1904.04752(se abrirá en una nueva ventana)) and CuS nanocrystals (
https://arxiv.org/abs/1903.05037(se abrirá en una nueva ventana)) can be decorated with organic dyes to greatly expand their sensitivity for optical wavelengths which are typically not detected by these materials. In contrast, three-dimensional supercrystals of Au nanoclusters were found to exhibit highly interesting electric transport properties owing to the exceptionally large degree of long-range structural order (
https://doi.org/10.1038/s41467-020-19461-x(se abrirá en una nueva ventana)) but they turned out to be chemically too unstable under intense light pulses. However, this discovery has enabled a follow-up study which utilizes this material for the cost-effective fabrication of electrical micro-circuits (
https://doi.org/10.1002/smtd.202201221(se abrirá en una nueva ventana)). We have also explored the potential of Au nanorods for photodetection (
https://doi.org/10.3390/nano13091466(se abrirá en una nueva ventana)). Following a similar idea, we have established a new method to print thin stripes of nanocrystal films onto electrical micro-circuits for further use as optical transceivers (
https://arxiv.org/abs/2006.11202(se abrirá en una nueva ventana)). To complement the findings on optical transceivers based on nanocrystal/organic dye hybrid materials, we have detailed the interaction between these two material classes in experiment (
https://arxiv.org/abs/2005.00898(se abrirá en una nueva ventana)) as well as with an extensive review of the field (
https://doi.org/10.1002/anie.201916402(se abrirá en una nueva ventana)). We have designed optical transceivers based on CdSe nanocrystals and organic dyes with a 3dB bandwidth of 85 KHz (
http://arxiv.org/abs/2109.02049(se abrirá en una nueva ventana)). We established that the maximum speed possible with state-of-the-art PbS nanocrystals is likely to be limited around 1 ns (
https://doi.org/10.48550/arXiv.2112.11987(se abrirá en una nueva ventana)) highlighted pitfalls in accurately determining their speed (
https://doi.org/10.48550/arXiv.2209.03676(se abrirá en una nueva ventana)) and we concluded our exploration of such nanocrystals coupled to organic dyes with a review of the field (
https://doi.org/10.48550/arXiv.2202.06050(se abrirá en una nueva ventana)). We changed our focus material class to two-dimensional transition metal dichalocogenides and achieved a continuous development of the electrical bandwidth with such transceivers from 2.6 MHz for WSe2 (
https://doi.org/10.48550/arXiv.2203.14053(se abrirá en una nueva ventana)) over 18 MHz for MoS2 (
https://doi.org/10.1039/d3na00223c(se abrirá en una nueva ventana)) to >230 MHz for WSe2 (
https://doi.org/10.1039/d4lf00019f(se abrirá en una nueva ventana)). We studied the electronic structure of MoS2 nanomaterials by spectroelectrochemistry (
https://doi.org/10.1002/smll.202207101(se abrirá en una nueva ventana)) and monitored the effect of adsorbing organic dyes to their surface in this respect (
https://doi.org/10.26434/chemrxiv-2024-4kc0h(se abrirá en una nueva ventana)) also with a special emphasis on the orientation of the molecules (
https://doi.org/10.26434/chemrxiv-2023-tj7m0(se abrirá en una nueva ventana)). Combining transition metal dichalocogenides with black phosphorus enabled us to realize response times of 26 ps (
https://doi.org/10.1038/s41467-024-49760-6(se abrirá en una nueva ventana)) which we recently even surpassed with a 3 ps response for combining WS2 with graphene (
https://doi.org/10.26434/chemrxiv-2024-d352b(se abrirá en una nueva ventana)).