We have tested a variety of different nanomaterials and explored their potential towards application in fast optical transceivers. This includes PbS, CuS and CdSe nanocrystals as well as Au nanoclusters. Most notably, we found that the surfaces of CdSe (
https://arxiv.org/abs/1904.04752(s’ouvre dans une nouvelle fenêtre)) and CuS nanocrystals (
https://arxiv.org/abs/1903.05037(s’ouvre dans une nouvelle fenêtre)) can be decorated with organic dyes to greatly expand their sensitivity for optical wavelengths which are typically not detected by these materials. In contrast, three-dimensional supercrystals of Au nanoclusters were found to exhibit highly interesting electric transport properties owing to the exceptionally large degree of long-range structural order (
https://doi.org/10.1038/s41467-020-19461-x(s’ouvre dans une nouvelle fenêtre)) but they turned out to be chemically too unstable under intense light pulses. However, this discovery has enabled a follow-up study which utilizes this material for the cost-effective fabrication of electrical micro-circuits (
https://doi.org/10.1002/smtd.202201221(s’ouvre dans une nouvelle fenêtre)). We have also explored the potential of Au nanorods for photodetection (
https://doi.org/10.3390/nano13091466(s’ouvre dans une nouvelle fenêtre)). Following a similar idea, we have established a new method to print thin stripes of nanocrystal films onto electrical micro-circuits for further use as optical transceivers (
https://arxiv.org/abs/2006.11202(s’ouvre dans une nouvelle fenêtre)). To complement the findings on optical transceivers based on nanocrystal/organic dye hybrid materials, we have detailed the interaction between these two material classes in experiment (
https://arxiv.org/abs/2005.00898(s’ouvre dans une nouvelle fenêtre)) as well as with an extensive review of the field (
https://doi.org/10.1002/anie.201916402(s’ouvre dans une nouvelle fenêtre)). We have designed optical transceivers based on CdSe nanocrystals and organic dyes with a 3dB bandwidth of 85 KHz (
http://arxiv.org/abs/2109.02049(s’ouvre dans une nouvelle fenêtre)). We established that the maximum speed possible with state-of-the-art PbS nanocrystals is likely to be limited around 1 ns (
https://doi.org/10.48550/arXiv.2112.11987(s’ouvre dans une nouvelle fenêtre)) highlighted pitfalls in accurately determining their speed (
https://doi.org/10.48550/arXiv.2209.03676(s’ouvre dans une nouvelle fenêtre)) and we concluded our exploration of such nanocrystals coupled to organic dyes with a review of the field (
https://doi.org/10.48550/arXiv.2202.06050(s’ouvre dans une nouvelle fenêtre)). We changed our focus material class to two-dimensional transition metal dichalocogenides and achieved a continuous development of the electrical bandwidth with such transceivers from 2.6 MHz for WSe2 (
https://doi.org/10.48550/arXiv.2203.14053(s’ouvre dans une nouvelle fenêtre)) over 18 MHz for MoS2 (
https://doi.org/10.1039/d3na00223c(s’ouvre dans une nouvelle fenêtre)) to >230 MHz for WSe2 (
https://doi.org/10.1039/d4lf00019f(s’ouvre dans une nouvelle fenêtre)). We studied the electronic structure of MoS2 nanomaterials by spectroelectrochemistry (
https://doi.org/10.1002/smll.202207101(s’ouvre dans une nouvelle fenêtre)) and monitored the effect of adsorbing organic dyes to their surface in this respect (
https://doi.org/10.26434/chemrxiv-2024-4kc0h(s’ouvre dans une nouvelle fenêtre)) also with a special emphasis on the orientation of the molecules (
https://doi.org/10.26434/chemrxiv-2023-tj7m0(s’ouvre dans une nouvelle fenêtre)). Combining transition metal dichalocogenides with black phosphorus enabled us to realize response times of 26 ps (
https://doi.org/10.1038/s41467-024-49760-6(s’ouvre dans une nouvelle fenêtre)) which we recently even surpassed with a 3 ps response for combining WS2 with graphene (
https://doi.org/10.26434/chemrxiv-2024-d352b(s’ouvre dans une nouvelle fenêtre)).