Objective
This project is devoted to the analysis of large quantum systems. It is divided in two parts: Part A focuses on the transport properties of interacting lattice models, while Part B concerns the derivation of effective evolution equations for many-body quantum systems. The common theme is the concept of emergent effective theory: simplified models capturing the macroscopic behavior of complex systems. Different systems might share the same effective theory, a phenomenon called universality. A central goal of mathematical physics is to validate these approximations, and to understand the emergence of universality from first principles.
Part A: Transport in interacting condensed matter systems. I will study charge and spin transport in 2d systems, such as graphene and topological insulators. These materials attracted enormous interest, because of their remarkable conduction properties. Neglecting many-body interactions, some of these properties can be explained mathematically. In real samples, however, electrons do interact. In order to deal with such complex systems, physicists often rely on uncontrolled expansions, numerical methods, or formal mappings in exactly solvable models. The goal is to rigorously understand the effect of many-body interactions, and to explain the emergence of universality.
Part B: Effective dynamics of interacting fermionic systems. I will work on the derivation of effective theories for interacting fermions, in suitable scaling regimes. In the last 18 years, there has been great progress on the rigorous validity of celebrated effective models, e.g. Hartree and Gross-Pitaevskii theory. A lot is known for interacting bosons, for the dynamics and for the equilibrium low energy properties. Much less is known for fermions. The goal is fill the gap by proving the validity of some well-known fermionic effective theories, such as Hartree-Fock and BCS theory in the mean-field scaling, and the quantum Boltzmann equation in the kinetic scaling.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences quantum physics
- natural sciences physical sciences theoretical physics particle physics fermions
- natural sciences mathematics pure mathematics discrete mathematics mathematical logic
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
34136 Trieste
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.