Objective
In our world of big data and theoretically intractable problems, automated preprocessing to simplify problem formulations before solving them algorithmically is growing ever more important. Suitable preprocessing has the potential to reduce computation times from days to seconds. In the last 15 years, a framework for rigorously studying the power and limitations of efficient preprocessing has been developed. The resulting theory of kernelization is full of deep theorems, but it has overshot its goal: it does not explain the empirical success of preprocessing algorithms, and most questions it poses do not lead to the identification of preprocessing techniques that are useful in practice. This crucial flaw stems from the fact that the theoretical kernelization framework does not address the main experimentally observed cause of algorithmic speed-ups: a reduction in the search space of the subsequently applied problem-solving algorithm.
REDUCESEARCH will re-shape the theory of effective preprocessing with a focus on search-space reduction. The goal is to develop a toolkit of algorithmic preprocessing techniques that reduce the search space, along with rigorous mathematical guarantees on the amount of search-space reduction that is achieved in terms of quantifiable properties of the input. The three main algorithmic strategies are: (1) reducing the size of the solution that the solver has to find, by already identifying parts of the solution during the preprocessing phase; (2) splitting the search space into parts with limited interaction, which can be solved independently; and (3) identifying redundant constraints and variables in a problem formulation, which can be eliminated without changing the answer.
This will raise the scientific study of preprocessing to the next level. Since physical limits form a barrier to further speeding up computer hardware, future advances in computing power rely on algorithmic breakthroughs as envisioned here.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science big data
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
5612 AE Eindhoven
Netherlands
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.