Project description
From insects to autonomous robots
Flying insects are the best model for studying vision in flight due to their simple nervous system and the fixed optics of their compound eyes. Considering the fact that the growing market of autonomous robotics relies on visual guidance, studying how flying insects direct their gaze in-flight is useful. The EU-funded Vision-In-Flight project aims to carry out a pioneering study on the neural mechanisms of insect vision, focusing on directed gaze control in object tracking. Using high-precision scale motion capture, ultralight wireless neural telemetry and virtual reality, the project will encode insect vision in speed motion manoeuvres to enable unprecedented quality control in autonomous systems.
Objective
This project investigates how biological vision operates under the fastest and most challenging motion condition: flight. Specifically, we look beyond gaze stabilization and focus on directed gaze control such as object tracking. Flying insects are ideal model for studying vision in flight due to its relatively simple nervous system and the fixed optics of the compound eyes. Insect vision has elucidated fundamental circuitries of vision via psychophysics, electrophysiology, computational modelling, and connectomics. However, we have limited knowledge on how insects use vision in free flight and what visual signals influence motor control during aerial interactions. This study aims to reveal how flying insects direct their gaze in-flight to extract target information for guidance and to facilitate the execution of complex flight manoeuvres. To achieve this objective, we will advance three emerging techniques: 1) high-precision insect scale motion capture; 2) ultralight wireless neural telemetry; 3) virtual reality for freely flying insects. I was involved in developing the first two methods and they both still require significant development to suit this project. The third budded from a successful ERC project, which enabled virtual reality experiments with freely behaving animals, and also requires additional breakthrough in order to accommodate this project. By advancing these techniques together, we can fully control the visual input of a freely flying insect and simultaneously record relevant visual signals. While modern image sensors and image processing can sometimes surpass biological vision, machine vision systems today still cannot utilize some tactical benefits of directed gaze control. Indeed, learning how to look is one of the best lessons a visually guided system can take from biology. This research informs the control of autonomous systems such as self-driving cars, unmanned aerial taxi, and robotic courier which will revolutionize the upcoming era.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
- natural sciences biological sciences zoology entomology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
SW7 2AZ London
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.