Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Energy-efficient membranes for carbon capture by crystal engineering of two-dimensional nanoporous materials

Descripción del proyecto

La captura de carbono recibe un impulso de los nanomateriales de alto rendimiento y bajo consumo energético

Las tecnologías de captura de carbono desempeñan un papel fundamental en la reducción del CO2 atmosférico, ante la dificultad de alcanzar la neutralidad climática en un futuro próximo. Hace más de un siglo que se utiliza la depuración por aminas para separar el CO2 del gas natural y el hidrógeno. Sin embargo, la energía necesaria para ello es considerable. El equipo del proyecto UltimateMembranes, financiado con fondos europeos, desarrollará membranas de separación de alto rendimiento para distintas aplicaciones de captura de carbono. Utilizará ingeniería de cristales para crear membranas bidimensionales nanoporosas, química y térmicamente estables, con selectividad de tamaño. Estas membranas reducirán el consumo de energía e intensificarán el proceso, además de ser respetuosas con el medio ambiente y compatibles con un funcionamiento descentralizado.

Objetivo

The EU integrated strategic energy technology plan, SET-plan, in its 2016 progress report, has called for urgent measures on the carbon capture, however, the high energy-penalty and environmental issues related to the conventional capture process (amine-based scrubbing) has been a major bottleneck. High-performance membranes can reduce the energy penalty for the capture, are environment-friendly (no chemical is used, no waste is generated), can intensify chemical processes, and can be employed for the capture in a decentralized fashion. However, a technological breakthrough is needed to realize such chemically and thermally stable, high-performance membranes. This project seeks to develop the ultimate high-performance membranes for H2/CO2 (pre-combustion capture), CO2/N2 (post-combustion capture), and CO2/CH4 separations (natural gas sweetening). Based on calculations, these membranes will yield a gigantic gas permeance (1 and 0.1 million GPU for the H2 and the CO2 selective membranes, respectively), 1000 and 10-fold higher than that of the state-of-the-art polymeric and nanoporous membranes, respectively, reducing capital expenditure per unit performance and the needed membrane area. For this, we introduce three novel concepts, combining the top-down and the bottom-up crystal engineering approaches to develop size-selective, chemically and thermally stable, nanoporous two-dimensional membranes. First, exfoliated nanoporous 2d nanosheets will be stitched in-plane to synthesize the truly-2d membranes. Second, metal-organic frameworks will be confined across a nanoporous 2d matrix to prepare a composite 2d membrane. Third, atom-thick graphene films with tunable, uniform and size-selective nanopores will be crystallized using a novel thermodynamic equilibrium between the lattice growth and etching. Overall, the innovative concepts developed here will open up several frontiers on the synthesis of high-performance membranes for a wide-range of separation processes.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Aportación neta de la UEn
€ 1 875 000,00
Dirección
BATIMENT CE 3316 STATION 1
1015 Lausanne
Suiza

Ver en el mapa

Región
Schweiz/Suisse/Svizzera Région lémanique Vaud
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 875 000,00

Beneficiarios (1)