Descripción del proyecto
Un método bioinspirado para convertir la energía solar en combustible de hidrógeno almacenable
El proceso de fotosíntesis de las plantas comienza con la absorción de energía por parte de los complejos recolectores de luz. Estos complejos pigmento-proteína pueden absorber energía y transferirla con gran velocidad y eficacia al centro de reacción, que es el lugar de conversión de la energía solar. El equipo del proyecto BioInspired_SolarH2, financiado con fondos europeos, se ha inspirado en este proceso natural para diseñar sistemas artificiales que puedan convertir la energía solar en hidrógeno, un combustible limpio y renovable. Para lograrlo, los investigadores construirán conjuntos cromóforo-proteína robustos, capaces de aprovechar la coherencia para garantizar una captación y conversión eficaces de la energía solar. A fin de seguir investigando estos sistemas, emplearán métodos espectroscópicos en régimen estacionario y con resolución temporal. El combustible de hidrógeno almacenable es muy prometedor para sustituir a los combustibles fósiles.
Objetivo
With this proposal, I aim to achieve the efficient conversion of solar energy to hydrogen. The overall objective is to engineer bio-inspired systems able to convert solar energy into a separation of charges and to construct devices by coupling these systems to catalysts in order to drive sustainable and effective water oxidation and hydrogen production.
The global energy crisis requires an urgent solution, we must replace fossil fuels for a renewable energy source: Solar energy. However, the efficient and inexpensive conversion and storage of solar energy into fuel remains a fundamental challenge. Currently, solar-energy conversion devices suffer from energy losses mainly caused by disorder in the materials used. The solution to this problem is to learn from nature. In photosynthesis, the photosystem II reaction centre (PSII RC) is a pigment-protein complex able to overcome disorder and convert solar photons into a separation of charges with near 100% efficiency. Crucially, the generated charges have enough potential to drive water oxidation and hydrogen production.
Previously, I have investigated the charge separation process in the PSII RC by a collection of spectroscopic techniques, which allowed me to formulate the design principles of photosynthetic charge separation, where coherence plays a crucial role. Here I will put these knowledge into action to design efficient and robust chromophore-protein assemblies for the collection and conversion of solar energy, employ organic chemistry and synthetic biology tools to construct these well defined and fully controllable assemblies, and apply a complete set of spectroscopic methods to investigate these engineered systems.
Following the approach Understand, Engineer, Implement, I will create a new generation of bio-inspired devices based on abundant and biodegradable materials that will drive the transformation of solar energy and water into hydrogen, an energy-rich molecule that can be stored and transported.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias químicaselectroquímicaelectrólisis
- ciencias naturalesciencias físicasfísica teóricafísica de partículasfotones
Para utilizar esta función, debe iniciar sesión o registrarse
Palabras clave
Programa(s)
Régimen de financiación
ERC-STG - Starting GrantInstitución de acogida
43007 Tarragona
España