Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Translating adaptive microscopes to the clinic for tissue analysis during surgery

Project description

Improved surgical microscopes for real-time feedback

When operating, surgeons must have a clear visualisation of the anatomical structures of the body. Nowadays this is provided by surgical microscopes which incorporate high-precision optics, illumination and three-dimensional view, thereby increasing surgical safety. The key objective of the EU-funded ClinAO project is to advance surgical microscopes to offer sharper cell images and improved contrast in real time. To achieve this, researchers will incorporate the technology of confocal fluorescence microscopy, which uses fluorescent signals to generate sharp images of the plane of focus at high resolution. The generated surgical microscope is expected to improve surgical resection precision and operation times.

Objective

Optical microscopes are one of the key tools that that guide a surgeon during the most complicated surgeries and provide the necessary feedback. State-of-the-art confocal laser scanning microscopes and endoscopes provide the most reliable images for diagnostic purposes. However, they are not yet capable enough to be used intraoperatively for high-resolution fluorescence imaging in some of the most complicated surgeries. Ideally, the surgeon needs to see the tissue in three dimensions at cellular resolution. In principle, such images can be generated by a confocal fluorescence microscope, but a key obstacle limiting new applications is that these microscopes are prone to the detrimental effects of aberrations. This means that only the upper layers of cells can be seen clearly. We propose a new technology for surgical microscopes that will use adaptive optics to correct for problematic tissue-induced aberrations. Aberration correction will enable deeper penetration with reduced imaging times that are required for real time feedback and sharper cellular level images with better contrast. Adaptive optics has already enabled aberration correction in research microscopes, however such technology is not yet available for use in the clinic. We propose to develop new generation of adaptive optical confocal fluorescence microscopes and endoscopes for intraoperative use in the clinic. The proposed microscope will enable more effective removal of abnormal tissues and reduced surgery times. The resulting shorter and more successful surgery will have manifold benefits to health and quality of life, not to mention economic savings. The new prototype microscopes will form the basis of future commercial development to disseminate this technology widely.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-POC - Proof of Concept Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-PoC

See all projects funded under this call

Host institution

THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 149 850,00
Address
WELLINGTON SQUARE UNIVERSITY OFFICES
OX1 2JD Oxford
United Kingdom

See on map

Region
South East (England) Berkshire, Buckinghamshire and Oxfordshire Oxfordshire
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 149 850,00

Beneficiaries (1)

My booklet 0 0