European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Development of Circadian Rhythms on Chip

Description du projet

Un foie sur puce suivant les schémas veille-sommeil natifs prédit le métabolisme des médicaments

Le foie est le site principal du métabolisme des médicaments, les convertissant en composés hydrosolubles pouvant être excrétés dans les fluides corporels. Les processus de recherche et de développement de médicaments doivent prédire divers paramètres liés au métabolisme et à la toxicité des médicaments. Cependant, les modèles animaux ou les tests existants ne parviennent pas à reproduire l’environnement dynamique du foie. Pour résoudre ce problème, le projet CircaCHIP, financé par l’UE, a développé un dispositif de foie sur puce basé sur la microfluidique qui capture la dynamique métabolique et les oscillations de température et d’hormones du tissu natif. Cette nouvelle plateforme fournit le premier appareil qui reproduit les rythmes circadiens et peut prédire avec précision le métabolisme, la clairance et la toxicité des produits pharmaceutiques.

Objectif

The liver is responsible for the systemic regulation of human metabolism, responding to a dynamically changing hormonal and nutritional environment. These physiological dynamics limited our ability to model human metabolism in our efforts to create efficient pharmaceutical interventions for prevalent metabolic diseases, such as fatty liver disease, obesity, and type-2 diabetes. In addition, physiological dynamics impact the pharmacokinetics and toxicity of drugs due to circadian changes in drug metabolism, affecting our ability to formulate efficient pharmaceutical interventions or properly assess drug toxicity (i.e. Chronopharmacology). The problem stems from our inability to model the dynamics of human metabolism in vitro, and compounded by the failure of animal models to predict human response due to differences in physiology, metabolic regulation, and an inverted day/night cycles. In addition, in vitro hepatocytes show little to no metabolic function and lack the physiological complexity of human tissue. Therefore, there is a pressing need to develop models that mimic human physiological complexity. Recently, we established groundbreaking libraries of expandable human hepatocytes (Levy et al. Nature Biotechnology 2015) and a cutting-edge liver-on-chip platform that tracks metabolic dynamics in real time (Bavli et al. PNAS 2016). Our technology explained the idiopathic toxicity of acetaminophen and the idiosyncratic toxicity of troglitazone and was recently highlighted by the H2020 program. Here, we describe the development of a novel platform that captures the synchronization of circadian rhythms in self-assembled human micro-livers by microfluidic oscillations of temperature and hormones. Our next generation model for liver metabolism will present a quantum leap in capability, offering to go beyond animal models by predicting time-of-day dependent toxicity and drug clearance. In addition, we will enable the rational design of a new generation of pharmaceuticals

Régime de financement

ERC-POC - Proof of Concept Grant

Institution d’accueil

THE HEBREW UNIVERSITY OF JERUSALEM
Contribution nette de l'UE
€ 149 969,00
Adresse
EDMOND J SAFRA CAMPUS GIVAT RAM
91904 Jerusalem
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 149 969,00

Bénéficiaires (1)