Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Predictive Epigenetics: Fusing Theory and Experiment

Project description

Fusion of theoretical and experimental epigenetics

Epigenetic modifications of DNA and chromatin, such as methylation, acetylation and ubiquitination of histones, enable gene regulation that modulates gene activity states. Epigenetic proteins modify thousands of genes, including developmental regulators, tumour suppressors and signalling molecules. The field of epigenetics is dominated and overwhelmed by information due to the vast amount of generated Big Data. Funded by the Marie Skłodowska-Curie Actions programme, the PEP-NET project aims at a paradigm shift in dealing with generated information via a combination of theoretical and experimental epigenetics. The project research network will train young researchers to use quantitative experiments with predictive theoretical models and to apply this knowledge in understanding epigenetic functions.

Objective

Epigenetic mechanisms of gene regulation are profoundly implicated in human health and disease. However, we are still far from a complete mechanistic understanding of many epigenetic processes. Without an understanding of mechanisms we cannot fully understand function in healthy cells, in disease states, and the effects and side effects of therapeutic interventions. This severely limits the development of healthcare strategies. Research in epigenetics has typically been based on experiments and not on theory. Although this has delivered large amounts of information, information alone is not sufficient. Further progress urgently needs a paradigm shift in the way in which we study epigenetics, namely: epigenetics needs mathematics. Mathematical models are essential to capture and understand the complex, dynamic and stochastic nature of epigenetic regulation. Models are immensely powerful because they identify unifying concepts and enable predictions of system properties. Modelling epigenetic processes not only holds the key to a deep mechanistic understanding, but also ultimately, to drug response predictions, patient-specific diagnoses and new therapies. One of the greatest challenges to uniting biology and mathematics is the barrier between disciplines, because education in each field has traditionally been mono-disciplinary. The PEP-NET ITN will overcome these barriers by uniting 16 outstanding European academic laboratories and companies who have pioneered the successful combination of theoretical and experimental epigenetics. PEP-NET will train a new cohort of 15 European researchers to combine quantitative experiments with predictive theoretical models, and to apply this knowledge to basic and applied questions of epigenetic function.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-ITN-2018

See all projects funded under this call

Coordinator

HUMBOLDT-UNIVERSITAET ZU BERLIN
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 758 365,20
Address
UNTER DEN LINDEN 6
10117 Berlin
Germany

See on map

Region
Berlin Berlin Berlin
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 758 365,20

Participants (10)

Partners (5)

My booklet 0 0