Descripción del proyecto
Métodos nuevos para adaptar las propiedades de semiconductores de baja dimensionalidad
Los nanotubos de carbono monocapa son cilindros nanoscópicos de grafeno con diferentes diámetros y características. Sus propiedades singulares como, por ejemplo, su elevada conductividad eléctrica y emisión en el rango de longitud de onda del infrarrojo cercano con líneas espectrales estrechas y dependientes del diámetro, los hace útiles para múltiples aplicaciones, incluidas la transmisión óptica de datos y la bioimagenología. El concepto novedoso de emplear defectos específicos y grupos moleculares unidos covalentemente para funcionalizar nanotubos de carbono monocapa semiconductores permite a los investigadores adaptar sus propiedades de transporte de cargas y emisión de luz para su uso en dispositivos prácticos. El objetivo del proyecto financiado con fondos europeos TRIFECTs es manipular de manera sistemática las propiedades de nanotubos de carbono monocapa cargados y neutros mediante la creación de defectos específicos.
Objetivo
Semiconducting single-walled carbon nanotubes (SWNTs) combine solution-processability, large carrier mobilities, narrow emission linewidths and environmental stability for optoelectronic devices with light-emission in the near-infrared (800-1800 nm, e.g. for optical data communication and bio-imaging) when sorted by (n,m) species. The recent availability of highly pure, monochiral semiconducting SWNTs as bulk materials allows us to employ and further tailor their charge transport and light emission properties and thus enables their application in practical devices. Two new emissive species - charged excitons (trions) and bright sp3-defects - were recently discovered in SWNTs and have fundamentally changed our notions about SWNT luminescence. Both show red-shifted, narrow and enhanced emission. However, very little is yet known about their photophysical properties and especially their interactions with each other and their environment (e.g. in devices). Their emissive properties could potentially be tailored by external magnetic fields, dielectric environment and additional functional groups. Strong light-matter coupling in suitable optical cavities could be applied to create trion-polaritons in SWNTs as new low-mass charge carriers in polaritonic devices. Trions and emissive sp3-defects are not limited to SWNTs and hence these concepts could be transferred and applied to other low-dimensional semiconductors.
The goals of this project are to
- understand and use trions and trion-polaritons for light emission and polaritonic charge transport,
- understand and tune the interactions of sp3-defects with charges and trions in SWNTs,
- modify and apply sp3-defects for enhanced light emission from SWNTs in optoelectronic devices,
- explore trions in new low-dimensional materials (e.g. graphene nanoribbons and novel monolayered semiconductors).
Ámbito científico
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
69117 Heidelberg
Alemania