Project description
Speeding the development of algorithms for the world's fastest computations
Quantum supremacy, as its name suggests, refers to the ability of a quantum computer to perform a computational task beyond the capability of a classical computer. It is a prerequisite to full-scale quantum computing, and its first demonstration in 2019 was a monumental scientific feat, opening the door to a new age of discovery and development. The field of quantum algorithms seeks ways to speed up the solution of problems using quantum computers, and it has never been more relevant. The EU-funded QAFA project is addressing some of the most important known challenges to developing quantum algorithms for real-life problems for maximum impact now.
Objective
"Quantum computers are designed to use quantum mechanics to go beyond the power of any standard computer based only on classical physics. Following intensive experimental efforts, it is predicted that a demonstration of so-called ""quantum computational supremacy"" will occur in the near future. However, many urgent questions remain regarding the usefulness of quantum computers for problems of real practical interest, and the timescale on which such usefulness will be achieved. The overall goal of this project is to address the most significant near-term and long-range theoretical challenges involved in bringing quantum algorithms to practical applications.
The project comprises three programmes of work, with the following goals:
- Design quantum algorithms that accelerate general classical algorithmic frameworks; develop efficient quantum communication protocols; and characterise the features of problems that allow a quantum speedup;
- Demonstrate larger quantum-classical separations than previously known, and enable rigorous verification of quantum computational supremacy experiments;
- Find new quantum algorithms for key problems in quantum physics, including learning and testing algorithms for large quantum systems. Simulation of quantum-mechanical systems is considered the most important application area for quantum computers, yet current algorithms are still beyond the reach of near-term devices.
A unique feature of this project is its approach encompassing the full spectrum of quantum algorithms research, from underpinning mathematics through to detailed analysis of applications. Making progress on the foundations will enable progress on the more technically challenging aspects of applications, while having particular applications in mind will raise interesting new foundational questions.
"
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
BS8 1QU BRISTOL
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.