Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

New Horizons in Quantum Matter: From Critical Fluids to High Temperature Superconductivity

Project description

Probing the behaviour of strongly correlated materials

Understanding how strongly correlated materials behave at low temperatures has been a long-standing challenge in condensed matter physics. These quantum materials display unusual properties such as anomalous transport, complex phase diagrams and high-temperature superconductivity. However, a better understanding of them has been hindered by a lack of suitable theoretical tools. To gain further knowledge about these complex quantum systems, the EU-funded HQMAT project plans to conduct quantum Monte Carlo simulations of metals close to quantum critical points. Moreover, it will conduct analytical studies of strongly coupled lattice models. Overall, the project will seek 'organising principles' to describe strongly correlated quantum matter, focussing mainly on generic, universal features of quantum fluids.

Objective

Understanding the low-temperature behavior of quantum correlated materials has long been one of the central challenges in condensed matter physics. Such materials exhibit a number of interesting phenomena, such as anomalous transport behavior, complex phase diagrams, and high-temperature superconductivity. However, their understanding has been hindered by the lack of suitable theoretical tools to handle such strongly interacting quantum ``liquids.''
Recent years have witnessed a wave of renewed interest in this long-standing, deep problem, both from condensed matter, high energy, and quantum information physicists. The goal of this research program is to exploit the recent progress on these problems to open new ways of understanding strongly-coupled unconventional quantum fluids. We will perform large-scale, sign problem-free QMC simulations of metals close to quantum critical points, focusing on new regimes beyond the traditional paradigms. New ways to diagnose transport from QMC data will be developed. Exotic phase transitions between an ordinary and a topologically-ordered, fractionalized metal will be studied. In addition, insights will be gained from analytical studies of strongly coupled lattice models, starting from the tractable limit of a large number of degrees of freedom per unit cell. The thermodynamic and transport properties of these models will be studied. These solvable examples will be used to provide a new window into the properties of strongly coupled quantum matter. We will seek ``organizing principles'' to describe such matter, such as emergent local quantum critical behavior and a hydrodynamic description of electron flow. Connections will be made with the ideas of universal bounds on transport and on the rate of spread of quantum information, as well as with insights from other techniques. While our study will mostly focus on generic, universal features of quantum fluids, implications for specific materials will also be studied.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-COG - Consolidator Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2018-COG

See all projects funded under this call

Host institution

WEIZMANN INSTITUTE OF SCIENCE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 515 400,00
Address
HERZL STREET 234
7610001 Rehovot
Israel

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 515 400,00

Beneficiaries (1)

My booklet 0 0