Skip to main content
European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

New Horizons in Quantum Matter: From Critical Fluids to High Temperature Superconductivity

Descripción del proyecto

Estudio del comportamiento de materiales fuertemente correlacionados

Comprender cómo se comportan materiales fuertemente correlacionados a bajas temperaturas ha constituido un reto inveterado de la física de la materia condensada. Estos materiales cuánticos presentan propiedades inusuales como, por ejemplo, un transporte anómalo, diagramas de fase complejos y superconductividad de alta temperatura. Con todo, la carencia de herramientas teóricas propicias ha obstaculizado que se ahonde en su conocimiento. El proyecto HQMAT, financiado con fondos europeos, se propone llevar a cabo simulaciones cuánticas de Monte Carlo de metales próximos a puntos críticos cuánticos para obtener una mejor comprensión de estos sistemas cuánticos complejos. Además, se realizarán estudios analíticos de modelos de redes fuertemente acopladas. En general, el proyecto examinará «principios de organización» para describir materia cuántica fuertemente correlacionada, prestando especial atención a las características genéricas y universales de los fluidos cuánticos.

Objetivo

Understanding the low-temperature behavior of quantum correlated materials has long been one of the central challenges in condensed matter physics. Such materials exhibit a number of interesting phenomena, such as anomalous transport behavior, complex phase diagrams, and high-temperature superconductivity. However, their understanding has been hindered by the lack of suitable theoretical tools to handle such strongly interacting quantum ``liquids.''
Recent years have witnessed a wave of renewed interest in this long-standing, deep problem, both from condensed matter, high energy, and quantum information physicists. The goal of this research program is to exploit the recent progress on these problems to open new ways of understanding strongly-coupled unconventional quantum fluids. We will perform large-scale, sign problem-free QMC simulations of metals close to quantum critical points, focusing on new regimes beyond the traditional paradigms. New ways to diagnose transport from QMC data will be developed. Exotic phase transitions between an ordinary and a topologically-ordered, fractionalized metal will be studied. In addition, insights will be gained from analytical studies of strongly coupled lattice models, starting from the tractable limit of a large number of degrees of freedom per unit cell. The thermodynamic and transport properties of these models will be studied. These solvable examples will be used to provide a new window into the properties of strongly coupled quantum matter. We will seek ``organizing principles'' to describe such matter, such as emergent local quantum critical behavior and a hydrodynamic description of electron flow. Connections will be made with the ideas of universal bounds on transport and on the rate of spread of quantum information, as well as with insights from other techniques. While our study will mostly focus on generic, universal features of quantum fluids, implications for specific materials will also be studied.

Régimen de financiación

ERC-COG - Consolidator Grant

Institución de acogida

WEIZMANN INSTITUTE OF SCIENCE
Aportación neta de la UEn
€ 1 515 400,00
Dirección
HERZL STREET 234
7610001 Rehovot
Israel

Ver en el mapa

Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 515 400,00

Beneficiarios (1)